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Abstract – The present work predicts the performance and exhaust parameters of a single cylinder 4-stroke diesel 
engine at different injection pressures using blended mixture of Polanga biodiesel and diesel by artificial neural 
network (ANN). Experimental data for training and testing in the proposed ANN was obtained at a constant speed 
and full load condition. An ANN model was developed based on standard Back- Propagation algorithm for the 
engine. Multi layer perception network (MLP) was used for non-linear mapping between the input and output 
parameters. Different activation functions and several rules were used to assess the percentage error between the 
desired and the predicted values. It was observed that the ANN model can predict the engine performance and 
exhaust emissions quite well with correlation coefficient (R) 0.99998, 0.9999, 0.99998, 0.9999, 0.9958, 0.9993, 
0.9999 for the brake specific fuel consumption, brake thermal efficiency, exhaust gas temperature, NOx, CO, smoke 
and UBHC emissions, respectively.  
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 1. INTRODUCTION 

Rapidly increasing energy demand due to 
industrialization has led to a large number of developing 
countries importing crude oil. Thus, a major part of their 
export earnings is spent on purchase of petroleum 
products. The other problem of concern is the 
degradation of environment due to fossil fuel 
combustion besides the fuel crisis. Thus it is essential 
that low emission alternate fuels must be developed for 
use in diesel engines. Biodiesel has been widely 
recognized in the alternative fuel industry due its 
attractive features: (i) it is plant-derived, and as such its 
combustion does not increase current net atmospheric 
levels of greenhouse gas (ii) it can be domestically 
produced, offering the possibility of reducing petroleum 
imports; (iii) it is biodegradable; and (iv) relative to 
conventional diesel fuel, its combustion products have 
reduced levels of particulates, carbon monoxide, and, in 
some conditions, nitrogen oxides [1]. The research and 
development activities on biodiesel have been mostly on 
sunflowers, saffola, soyabean, rapeseed and peanut 
which are considered edible in several countries [2]-[3]. 
However, biodiesel can also be produced from non-
edible oil seeds like jatropha, karanja, neem, cotton, 
rubber and polanga, etc. [4]. Sahoo et al. [2], conducted 
engine tests using Polanga based biodiesel and 
recommended its use as an alternative fuel for the 
existing conventional diesel engines without any major 
hardware modifications. The density and viscosity of the 
Polanga oil methyl ester formed after triple stage 
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transesterification were found to be close to those of 
petroleum diesel oil. Sahoo et al. [5] evaluated 
comparative performance and emission characteristics of 
jatropha, karanja and polanga based biodiesel as fuel in 
a tractor engine. They observed that brake specific fuel 
consumption for all the biodiesel blends with diesel 
increased with blends and decreased with speed. The 
study however lacks the effect of injection pressure on 
engine performance. Injection pressure along with blend 
percentage is also an important parameter that may 
affect the performance and emission characteristics [6]. 
 The performance of a CI engine for various 
proportions of blends, for various compression ratios 
and at different injection timings and pressures are 
usually desired by engine manufacturers and engineers. 
This can be obtained either by conducting 
comprehensive tests or by modeling the engine 
operation. Testing the engine under all possible 
operating conditions and fuel cases are both time 
consuming and expensive. On the other hand developing 
an accurate model for the operation of a CI engine 
fuelled with blends of biodiesel is too difficult due to the 
complex nature of the processes involved. So, as an 
alternative, engine performance and exhaust emissions 
can be modeled using Artificial Neural Networks 
(ANNs). The predictive ability of an ANN results from 
the training on experimental data and then validation by 
independent data. An ANN model can accommodate 
multiple input variables to predict multiple output 
variables. The prediction by a well-trained ANN is 
normally much faster than the conventional simulation 
programs or mathematical models as no lengthy iterative 
calculations are needed to solve differential equations 
using numerical methods but the selection of an 
appropriate neural network topology is important in 
terms of model accuracy and model simplicity. In 
addition, it is possible to add or remove input and output 
variables in the ANN if it is needed. Canakci et al. [7] 
investigated the engine performance and emissions 
characteristics of two different petroleum diesel-fuels 
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(No. 1 and No. 2), biodiesels (from soybean oil and 
yellow grease) using  Artificial Neural Networks where 
20% blends with No. 2 diesel fuel were used as 
experimental results. In this study, the average 
molecular weight, net heat of combustion, specific 
gravity, kinematic viscosity, C/H ratio and cetane 
number of each fuel were used as the input layer, while 
outputs were the brake specific fuel-consumption, 
exhaust temperature, and exhaust emissions. The back-
propagation learning algorithm with three different 
variants, single layer, and logistic sigmoid transfer 
function were used in the network. The network yielded 
R2 values of 0.99 for both training and test data. The 
mean % errors were smaller than 4.2 and 5.5 for the 
training and test data respectively. Ghobadian et al. [1] 
developed an artificial neural network model of a diesel 
engine using waste cooking biodiesel fuel with standard 
Back-Propagation algorithm. The developed model 
predicted the engine performance and exhaust emissions 
quite well with correlation coefficient (R) 0.9487, 0.999, 
0.929 and 0.999 for the engine torque, SFC, CO and HC 
emissions, respectively. The predicted MSE (Mean 
Square Error) was between the desired outputs as 
measured values and the simulated values were obtained 
as 0.0004 by the model. Canakci et al. [8] used ANN to 
model performance parameters and emissions of a 
biodiesel engine using waste cooking oil. Engine speed 
and percentage of blend were taken as the input 
variables and brake power, torque, specific fuel 
consumption and exhaust emissions as the outputs. It 
was observed that the regression values for most of the 
parameters were close to unity. Yusaf et al. [9] 
conducted experiments in a diesel engine fuelled with a 
combination of both compressed natural gas and diesel 
fuel. ANN modeling was used to predict brake power, 
torque, brake specific fuel consumption and engine 
emissions. A good correlation between predicted and the 
experimental values was observed. Ismail et al. [10] 
reported an artificial neural network model programmed 
for a light-duty diesel engine. Engine operating 
parameters viz., engine speed, output torque, fuel mass 
flow rate and biodiesel fuel types and blends, were used 
as the input parameters in the model. The results 
indicated that back-propagation feed-forward neural 
network, combination of tansig/purelin transfer 
functions, trainlm training algorithm were the optimum 
configuration to predict the correlations. Çay et al. [11] 
used artificial neural network (ANN) modeling to 
predict the brake specific fuel consumption, effective 
power and average effective pressure and exhaust gas 
temperature of the methanol engine. It was found that 
the R2 values were close to 1 for both training and 
testing data. RMS values were smaller than 0.015 and 
mean errors were smaller than 3.8% for the testing data. 
Wong et al. [12] evaluated optimal biodiesel ratio that 
could achieve the goals of fewer emissions, reasonable 
fuel economy and wide engine operating range. 
Different advanced machine learning techniques, 
namely ELM (extreme learning machine), LS-SVM 
(least-squares support vector machine) and RBFNN 
(radial-basis function neural network), were used to 
create engine models based on experimental data. Javed 

et al. [13] investigated the use of ANN modeling for 
prediction of performance and emission characteristics 
of a four stroke single cylinder diesel engine with 
Jatropha Methyl Ester biodiesel blends along with 
hydrogen in dual fuel mode. Seven training algorithms 
each with five combinations of trainings functions were 
investigated. Levenberg-Marquardt back propagation 
training algorithm with logarithmic sigmoid and 
hyperbolic tangent sigmoid transfer function resulted in 
best model for prediction of performance and emissions 
characteristics. Wong et al. [14] proposed a new 
biodiesel engine modeling and optimization framework 
based on extreme learning machine to achieve the goal 
of fewer emissions, low fuel cost and wide engine 
operating range. Logarithmic transformation of 
dependent variables was used to alleviate the problems 
of data scarcity and data exponentiality simultaneously. 
With the K-ELM engine model, cuckoo search (CS) was 
then employed to determine the optimal biodiesel ratio. 
The evaluation result showed that K-ELM can achieve 
comparable performance to LS-SVM, resulting in a 
reliable prediction result for optimization. It also showed 
that the optimization results based on CS was effective. 
In the present work, experimental investigations of the 
performance and emissions of the diesel engine were 
conducted for different proportions of blends of Polanga 
with diesel at different injection pressures for full load 
condition. Using data from experimental results, ANN 
models have been developed for the performance 
parameters and emissions characteristics. In the model, 
blends of Polanga with diesel, different injection 
pressures are taken as input parameters and brake 
specific fuel consumption, brake thermal efficiency, 
exhaust gas temperature, CO, NOx, smoke and UBHC 
emissions are taken as output parameters. 

2. EXPERIMENTAL INVESTIGATION 

The engine used in the present study was a Kirloskar 
make single cylinder four stroke water cooled CI engine. 
The detailed specification of the engine is shown in 
Table 1. The schematic diagram of the experimental set 
up is shown in Figure 1. The experimental set up 
consists of engine, dynamometer, load cell and 
temperature sensors etc. Figure 2 shows the 
photographic view of setup. 
 Eddy current-dynamometer was used for engine 
loading. A fuel consumption meter, DP transmitter, 
Range 0-500 mm wc, was used for measuring the 
specific fuel consumptions of the engine. A quartz 
(piezoelectric) Kistler makes transducer was used to 
determine the engine cylinder combustion gas pressure 
sensor mounted on the cylinder head. The signals from 
charging amplifier were fed to the data acquisition 
system where the engine control module converted the 
signals into digital data.  The in-cylinder pressure data in 
terms of pressure crank angle history was obtained from 
the Legion Brothers database. The maximum resolution 
of the pressure sensor was 1°CA. The cylinder pressure 
signal was passed through an amplifier to give outputs 
of 0-10volts for the calibrated pressure range of 0-100 
bar. Real time data acquisition was done with the help of 
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Engine test Express V5.76 which was Labview based 
software package developed by Legion Brothers. The 
rated frequency of the data acquisition system was 37 
kHz and the sampling time used was 60 seconds. This 
time duration was selected to ensure that the data is 
representative. All the signals collected from the test rig 
needed to be converted from an original analogue form 
to a digital form. This was achieved by using an 
Analogue to Digital Converter (ADC) interface between 

the transducers and the computer. The CED 1401 power 
ADC is able to record waveforms data, digital (event) 
data and marker information. It can also generate 
waveform and digital outputs simultaneously for 
realtime, multi-tasking experimental system using its 
own processor, clocks and memory under the control of 
the host computer. The Analogue to Digital Converter 
(ADC) has 8 channels, 500 MHz bandwidth and 4Gs/s 
sampling rate. 

 
 

 

Fig. 1. Experimental setup. 

 
 
 

Table 1.  Engine specifications. 
Item description KIRLOSKAR 

BHP 5HP 

Speed 1500 

Number of cylinders 1 

Compression ration 16.7:1 

Bore 80 mm 

Stroke 110 mm 

Orifice Diameter 20 mm 

Type of ignition Compression ignition 

Method of Loading Eddy current dyanometer 

Method of starting Manual cranking 

Method of cooling Water 
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Fig. 2. Photographic view of set up. 

 
 
 Exhaust gas analyzer of AVL make (AVL DiGas 
444) was used for measuring the emissions of HC, CO 
and NOx from the engine. A Smoke meter, model 437C, 
made by AVL Gurgaon, was used for measuring the 
smoke emission from engine. Exhaust gas emissions 
recorded were: unburned hydrocarbons (UBHC) in parts 
per million (ppm hex), and oxides of nitrogen (NOx) in 
ppm vol. and CO in % vol. by using gas analyzer. 
Opacity of the smoke in the exhaust was measured in % 
by using smoke meter. For exhaust gas temperature 
measurement, Chrome-Alumel K-Type thermocouples 
with stainless steel wire were implanted close to the 
engine exhaust manifold. The small micro-voltage 
outputs from these thermocouples were processed by the 
Express V5.76 software to give values in degrees 
centigrade for data logging and engine monitoring 
purposes. For cooling water temperature measurement, 
Chrome-Alumel K-Type thermocouples with stainless 
steel wire were implanted close to the engine water inlet 
and outlet manifold which gives the temperature of the 
water also obtained from the Legion Brothers database. 
The percentage uncertainties of various instruments is 
given in Table 2.  

The performance test of engine included fuel 
consumption and rating test. In order to carry out fuel 

consumption test, initially the engine was started and 
warmed up on zero loads. After that the engine was 
gradually loaded up to 100 percent load to stabilize its 
operation. The experiment with each selected fuel type 
was replicated three times and the average value of 
different performance and emission parameters 
measured was taken for analysis. In the present 
investigation, biodiesel derived from polanga oil was 
used as the test fuel. Biodiesel preparation through 
transesterification process has already been reported in 
previous studies [2]-[5]. Four biodiesel blends of 
Polanga were used viz., BD10, BD20, BD30, BD40. 
The injection pressure of the engine was kept at 180 bars 
(as set by the manufacturer) and the fuel was altered to 
biodiesel. The performance, emissions and combustion 
characteristics of diesel engine were recorded with a 
constant speed of 1500 rpm. Similar procedures were 
repeated for other biodiesel blends at the same injection 
pressure. To visualize the effect of injection pressure, 
the entire procedure was repeated for injection pressure 
of 160 bar, 200 bar, 220 bar and 240 bar. The 
experimental data obtained has been summarized in 
Table 3. 
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Table 2.  Percentage uncertainties of various instruments. 

Instruments Range Accuracy Percentage uncertainty 

AVL DiGas 444 Gas Analyser 

Hydrocarbon 0-20000 ppm vol 
<200: ±10  

±0.3 
>200: ±5% 

Nitric oxide 0-5000  ppm vol 
<500: ±50  

±0.2 
>500: ±10% 

AVL-437C Smoke meter 

Smoke opacity 0-100% ±1% ±1 

Exhaust gas temperature 0-1250oC ±1oC ±0.2 

Burette fuel  ±1cc ±1 

Transducer 0-100 bar ±0.01bar ±0.1 
 
 
 

Table 3. Experimental results under different injection pressures and biodiesel blends. 

IP (bar) BD (%) BSFC 
(kg/kWh) BTE (%) CO (%vol) UBHC 

(ppm) 
NOx 

(ppm) 
160 10 0.24 38 0.077 41 777 

160 20 0.247 36.21 0.07 40 790 

160 30 0.258 35.1 0.058 38 826 

160 40 0.267 34.02 0.0466 37 866 

180 10 0.2268 40.23 0.0712 40 785 

180 20 0.24 38.45 0.062 38 800 

180 30 0.25 37.25 0.052 36 836 

180 40 0.2614 36.66 0.039 35 878 

200 10 0.2268 40.6 0.0637 36 797 

200 20 0.238 39.31 0.05 34 811 

200 30 0.243 38.27 0.043 34 842 

200 40 0.2522 37.9 0.0254 31 888 

220 10 0.2535 35.77 0.0502 33 807 

220 20 0.247 36.63 0.04 32 814 

220 30 0.241 37.84 0.029 31 846 

220 40 0.2394 38.7 0.019 29 898 

240 10 0.262 34.56 0.0366 32 784 

240 20 0.2495 37.18 0.027 30 801 

240 30 0.238 39.34 0.022 29 835 

240 40 0.23 40.18 0.016 28 868 
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3 NEURAL NETWORK DESIGN 

3.1 Artificial neural networks 

ANNs are logic programming technique developed by 
imitating the operation of the human brain to perform 
functions such as learning, remembering, deciding, and 
inference, without receiving any aid. ANNs have various 
important features, such as learning from data, 
generalization, working with an infinite number of 
variables, etc. Artificial neural cells are the smallest 
units that form the basis of the operation of ANNs just 
like a biological neuron which receives inputs from 
other sources, combines them in some way, performs 
generally a non-linear operation on the result, and then 
outputs the final result. The artificial neural cells consist 
of mainly five elements namely; inputs, weights, 
summation functions, activation functions and outputs 
(Figure 3). 
 ANN has three main layers namely; input, hidden 
and output layers. The inputs are data from the external 
source. The processing elements, called neurons, in the 
input layer transfers data from the external source to the 
hidden layer. The weights are the values of connections 
between cells. The outputs are produced using data from 
neurons in the input and hidden layers, and the bias, 
summation and activation functions. In the output layer, 
the output of network is produced by processing data 
from hidden layer and sent to external source. The 
summation function is a function which calculates the 
net input of the cell. The summation function used in 
this study is given in Equation (1). 

                                             (1) 

 The activation function provides a curvilinear 
relation between the input and output layers. It also 
determines the output of the cell by processing the net 
input to the cell. The selection of an appropriate 

activation function significantly affects network 
performance. Commonly used activation functions are 
the threshold function, step activation function, sigmoid 
function, and hyperbolic tangent function. The type of 
activation function depends on the type of neural 
network to be designed. A sigmoid function is widely 
used for the transfer function. Logistic transfer function 
of the ANN model in this study is given in Equation (2).  

                                                   (2) 

 The significant advantages of artificial neural 
networks are learning ability and the use of different 
learning algorithms. The most important factor which 
determines its success in practice, after the selection of 
ANN architecture, is the learning algorithm. In order to 
obtain the output values closest to the numerical values, 
the best learning algorithm and the number of optimum 
neurons in the hidden layer must be determined.  
 A most sought-after algorithm is the back-
propagation algorithm, which has different variants. 
Back-propagation training algorithms such as conjugate 
gradient, quasi-Newton, and Levenberg–Marquardt 
(LM) use standard numerical optimization techniques. 
ANN with back-propagation algorithm learns by 
changing the weights which are stored as knowledge. 
The algorithm uses the second-order derivatives of the 
cost function so that a better convergence behavior can 
be obtained. To get the best prediction by the network, 
several architectures were evaluated and trained using 
the experimental data. The back-propagation algorithm 
was utilized in training of all ANN models. In the 
training stage, to obtain the output precisely, the number 
of neurons in the hidden layer was increased step by step 
(i.e. 1 to 20). As a result of conducted trials, best 
learning algorithms for most of the parameters was 
found to be the Levenberge Marquardt learning 
algorithm. The best ANN architecture built for 
prediction of UBHC is shown in Figure 4. 

  
 

 

Fig. 3. Structure of an artificial neural cell. 
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Fig. 4. Best ANN architecture for prediction of UBHC. 

 
 

Table 4. Correlation coefficients for outputs using different learning algorithms. 

Parameter Activation function Neurons 
Correlation coefficient 

Training Testing 

BTE 

Sig/ lin/lin 3/1 0.9986 0.9617 

Sig/lin/lin 4/1 0.9999 0.9884 

Sig/lin/lin 8/1 0.9999 0.9448 

BSFC 

Sig/Sig/lin 10/10 0.9998 0.9988 

Sig/lin/lin 5/1 0.9999 0.9959 

Sig/lin/lin 8/1 0.99998 0.99992 

Tan/lin/lin 12/1 0.999 0.996 

Tex 

Sig/ lin/lin 2/1 0.9968 0.99996 

Sig/lin/lin 4/1 0.9999 0.9982 

Sig/lin/lin 6/1 0.99998 0.9996 

CO 

Sig/ lin/lin 2/1 0.9941 0.9981 

Sig/lin/lin 4/1 0.9934 0.9998 

Sig/lin/lin 6/1 0.99998 0.9958 

NOx 

Sig/ lin/lin 2/1 0.9951 0.9977 

Sig/lin/lin 4/1 0.9991 0.9984 

Sig/lin/lin 6/1 0.9999 0.9994 

Smoke 

Sig/ lin/lin 2/1 0.9975 0.9912 

Sig/lin/lin 4/1 0.9993 0.9987 

Sig/lin/lin 6/1 0.9989 0.9974 

UBHC 

Sig/ lin/lin 1/1 0.9974 0.9983 

Sig/lin/lin 2/1 0.9976 0.9996 

Sig/lin/lin 4/1 0.9999 0.9896 
 
 
 Also, correlation coefficients of BTE, BSFC, Tex, 
CO, NOx, Smoke and UBHC for different learning 
algorithms are given in Table 4.  

 In this study, 20 experimental data sets were 
prepared for the training and testing data for the ANN. 
The ratio for training and testing data was selected as 
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70%:30%, i.e. 14 and 6 sets of the experimental data 
were randomly selected for the data training and testing 
data, respectively. In the back propagation model, the 
scaling of inputs and outputs dramatically affects the 
performance of an ANN. As mentioned above, the 
logistic sigmoid transfer function was used in this study. 
One of the characteristics of this function was that only 
a value between 0 and 1 can be produced. The input and 
output data sets were normalized between 0.1 and 0.9 
before the training and testing process to obtain the 
optimal predictions. Linear function suited best for the 
output layer. This arrangement of functions in function 
approximation problems or modeling is common and 
yields better results. However many other networks with 
several functions and topologies were examined. Three 
criteria were used to evaluate the networks and find the 
optimum one among them. The training and testing 
performance (MSE) were chosen to be 0.00001 for all 
ANNs. The smaller ANNs had the priority to be selected 
as the complexity and size of the network was also 
important. Finally, a regression analysis between the 
network response and the corresponding targets was 
performed to investigate the network response in more 
detail. Different training algorithms were also tested and 
finally Levenberg–Marquardt (Trainlm) was selected. 
The computer program was developed in MATLAB 
2010a. Neural network toolbox was used for ANN 
design. 

4. RESULTS AND DISCUSSIONS 

4.1  Biodiesel fuel characteristics and properties 

Biodiesel is produced by the three stage 
transesterification process. The first stage removes the 
organic matters and other impurities present in the 
unrefined filtered polanga oil using reagent. The second 
stage reduces the acid value of the oil about 4 mg 
KOH/gm corresponding to a FFA level of 2%. The 
product of the second stage (pure triglycerides) is 
transesterified to mono-esters of fatty acids (biodiesel) 
using alkali catalyst. Fuel properties are mentioned in 

Table 5. 

4.2 Performance Parameters 

4.2.1  Brake specific fuel consumption (BSFC) 

Table 3 shows BSFC results for different biodiesel-
blended diesel fuels and injection pressures at constant 
load. A decrease in injection pressure increased the 
BSFC values compared to original injection pressure of 
180 bar for all the blends. In this study BSFC results for 
different biodiesel-blended diesel fuels and injection 
pressures at constant load. A decrease in injection 
pressure increased the BSFC values compared to 
original injection pressure of 180 bar for all the blends 
due to decreasing injection pressure, fuel particle 
diameters will enlarge and ignition delay period during 
the combustion will increase. This situation causes an 
increase in the BSFC. On the other hand, increasing 
injection pressure from the original pressure decreases 
the BSFC values for BD20, BD30 and BD40. The 
decrease in BSFC can be attributed to the more efficient 
utilization of the fuel at higher injection pressure 
because of better atomization associated with slight 
delay in admission due to high needle lift pressure with 
same period and hence lesser fuel going to cylinder. For 
blends BD10 an increase in injection pressure increases 
the BSFC values due to a shorter ignition delay period. 
From Figure 5, minimum BSFC for BD10 is 0.226 
kg/kW-hr at 180 and 200 bar and increase in injection 
pressure from 200 to 240 bar, the BSFC is increased to 
0.36 kg/kW-hr. 

It is found that the BSFC is decreased with 
increase in injection pressure up to 200 bar. This may be 
due to that, as injection pressure increases the 
penetration length and spray cone angle increases. It is 
also notice that with increasing percentage of polanga 
biodiesel BSFC decline at elevated injection pressure, 
from experiments that is find that BD40 shows 0.23 
kg/kW-hr fuel consumption at 240 bar injection 
pressure, that is due to high viscosity of fuel. 

 
 

Table 5. Properties of polanga biodiesel and its blends. 

Fuel CV (KJ/kg) Viscosity (cSt) Density (gm/cc) Flash point (oC) 

Diesel 43996.3 2.91 0.830 77 

10%B 40094.2 3.1 0.839 82 

20%B 39193.7 3.2 0.847 88 

30%B 38393.3 3.32 0.855 94 

40%B 37792.9 3.6 0.863 99 

100%B 36992.5 6.8 0.941 152 
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Fig. 5. Variation of BSFC at different injection pressure for different blends. 

 
4.2.2  Brake thermal efficiency (BTE) 

The BTE points to the ability of the combustion system 
to accept the experimental fuel and provides comparable 
means of assessing how efficient the energy in the fuel 
was converted to mechanical output. It could be 
concluded that as the biodiesel amount increases in the 
fuel blend at the given injection pressure, the BSFC 
increases, since the Lower calorific value of the blend 
decreases. BTE is a function of BSFC and Lower 
calorific value of the blend for a constant effective 
power. It is clear that Lower calorific value is more 
effective than BSFC with regard to increasing BTE. The 
BTE is increased with increase in injection pressure due 
to the improved atomization and better combustion. The 
BTE is maximum at 200 bars for BD10 is 40.6% this is 
due to fine spray formed during injection and improved 
atomization as shown in Figure 5. Further the BTE tends 
to decrease, this may be due to that at higher injection 
pressure the size of fuel droplets decreases and very high 
fine fuel spray will be injected, because of this, 
penetration of fuel spray reduces and momentum of fuel 
droplets will be reduced. Therefore, the BTE generally 
increased as the biodiesel content increased in the 
blended fuel for all injection pressures. As demonstrated 
in Figure 6, the maximum BTE was acquired as 40.18% 
with the BD40 for 240 bar injection pressure.  

4.2.3  Exhaust gas temperature 

The variation of exhaust gas temperature with the 
injection pressure at full load for polanga biodiesel 
blends is given in Figure 7. In general EGT increases 
with the load, and for higher injection pressure the 
exhaust gas temperature is increased since the operating 
temperature is more at elevated injection pressure. It can 
be observed that the exhaust gas temperature increases 
as the percentage of biodiesel is increased. In polanga 
biodiesel blends operation the combustion is delayed 
due to higher physical delay period. As the combustion 
is belated, injected polanga biodiesel fuel particles may 
not get enough time to burn completely before TDC, 
hence some fuel mixture tend to burn during the early 

part of expansion, consequently after burning occurs and 
hence increase in the exhaust temperature. The variation 
with the injection pressure at full load for polanga 
biodiesel blends is shown in Figure 7.  
 Table 3 shows Tex results for different biodiesel-
blended diesel fuels and injection pressures at constant 
load. The exhaust gas temperature is minimum for 160 
bar injection pressure for all Polanga blends, minimum 
253oC for BD10 polanga blends at 160 bar injection 
pressure. Increasing the injection pressure increase in 
exhaust gas temperature (Tex) was shown in present 
study. Maximum exhaust gas temperature (Tex) 288oC 
for BD40 this is due to high oxygen content with at 240 
bars injection pressure occur in this study. Of all the 
blends, BD10 shows lower values of exhaust gas 
temperature at all the injection pressure, BD40 shows 
higher values of exhaust gas temperature at all the 
injection pressure due to increasing oxygen content with 
increasing blending. 

4.3  Exhaust emissions 

4.3.1 Carbon monoxide 

Carbon monoxide  results from partial combustion of 
fuel and it is produced most readily from petroleum 
fuels, which contain no oxygen in their molecular 
structure. Usually, CO emissions is affected by air–fuel 
equivalence ratio, fuel type, combustion chamber 
design, atomization rate, start of injection timing, 
injection pressure, engine load and speed. Table 3 shows 
CO results for different biodiesel-blended diesel fuels 
and injection pressures at constant load. It is shown from 
Figure 8 that CO emission level decreased with the 
increasing biodiesel percentage. This may be due to the 
more complete combustion of biodiesel with presence of 
more oxygen in the combustion. From this figure, it was 
concluded that increased injection pressure narrowed the 
CO emissions. The increasing injection pressure caused 
a good fuel–air mixing, easy and complete combustion 
of the smaller droplets. These effects lead to reduce CO 
emissions. However, BD 40 shows less emission of CO 
on all injection pressure. Reduction in CO was observed 
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with increasing injection pressure for biodiesel. 
Minimum CO emission of 0.016% by vol. was observed 
at the injection pressure of 240 bar. This is due to the 
lower carbon content of biodiesel and also better 

combustion caused by the improved atomization, better 
mixing process at higher injection pressure of 240 bar 
and maximum CO emission of 0.077% by vol. was 
observed at the injection pressure of 160 bar for BD10. 

 
 
 

 

Fig. 6. Variation of BTE with injection pressure 

 
 
 
 

 

Fig. 7. Variation of exhaust gas temperature (Tex) with injection pressure at full load 
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Fig. 8. Emission of carbon monoxide with injection pressure 

 
 
4.3.2  Un-burnt hydrocarbon emission (UBHC) 

Table 3 shows UBHC results for different biodiesel-
blended diesel fuels and injection pressures at constant 
load, un-burnt hydrocarbon emission emissions consist 
of fuel that is completely unburned or only partially 
burned. UBHC emissions result from the problems of 
fuel and air mixing, and largely unaffected by the 
overall air–fuel equivalence ratio. As shown in Figure 9, 
UBHC emission level decreased with the increasing 
biodiesel percentage.  
 The decreased trend of UBHC emissions of fuel 
might be presence of oxygen molecules in biodiesel 
helped for complete combustion. Figure 9 also gives 
UBHC emission results for different polanga biodiesel 
blends with injection pressures at full load. As seen in 
this figure, increased injection pressure decreased the 
UBHC emissions. The minimum UBHC emission (28 
ppm) was obtained with B40 for 240 bar injection 
pressure. The increasing injection pressure caused the 
fuel air mixing in the combustion chamber was more 
excellent, so the UBHC emissions was obtained less 
than that of the high injection pressure. Lowest UBHC 
emission of 28 ppm was observed at 240 bar, which is 9 
ppm lower than that of UBHC emission at 160 bar for 
the same biodiesel blend BD40. The reduction in UBHC 
emission of biodiesel is mainly due to the better 
vaporization and proper atomization. Further, the 
increasing of injection pressure improved the spray 
characteristics which led to better combustion.  

4.3.3  Oxides of nitrogen emissions 

This is the most important emission attribute of 
biodiesel and its blends. NOx is the most dangerous 
gaseous emissions from engines; the reduction of it is 
always the goal for engine researchers and engine 
manufacturers. Thermal NOx refers to NOx formed 
through high temperature oxidation of nitrogen (N2) in 
combustion chamber. The formation of NOx highly 

depends on in-cylinder temperatures, oxygen 
concentration and residence time for the reaction to take 
place, oxygen content of biodiesel is an central factor in 
the high NOx formation, because oxygen content of 
biodiesel provides high local peak temperatures and a 
equivalent excess of air. Figure 10 presents NOx 
emission values for different biodiesel blended diesel 
fuels and injection pressures at constant full load. 
As observed increased injection pressure boosted the 
NOx emissions. Maximum NOx emissions was 
measured to be 807.37 ppm vol, 814.98 ppm vol, 846.1 
ppm vol , and 898.05 ppm vol for BD10, BD20, BD30 
and BD40 at 220 bar injection pressure, respectively. 
Increasing the injection pressure decreased the particle 
diameter and caused the biodiesel diesel fuel spray to 
vaporize quickly. However, the liquid fuel cannot 
penetrate deeply into the combustion chamber. So, 
higher injection pressure initially generates faster 
combustion rates, resulting in higher temperatures as 
shown in fig. As a consequence, NOx concentrations 
start to increase. The NOx emission level increases 
continuous with increasing injection pressure; this was 
because of faster combustion and higher cylinder gas 
temperature. Maximum NOx emission is 898.05 ppm vol 
at 240 bar of BD 40. 

4.3.4 Smoke opacity 

Smoke formation occurs at extreme air deficiency. Air 
or oxygen deficiency is locally present inside the diesel 
engine. Table 3 shows smoke opacity results for 
different biodiesel-blended diesel fuels and injection 
pressures at constant load. It increases as the air-fuel 
ratio decreases. The smoke opacity increased with the 
increase of the engine load. The formation of smoke 
stoutly depends on the engine load. As the load 
increases, more fuel is injected, and this increases smoke 
formation. The results obtained in this study support this 
statement. At the ORG injection pressure, while smoke 

http://www.rericjournal.ait.ac.th/


 Abhishek Sharma et. al. / International Energy Journal 15 (2015) 57-72 
  

www.rericjournal.ait.ac.th 

68 

opacity was measured to be 94% with B40 at full load. 
As illustrated in Figure 10 the smoke opacity decreased 
with the increase biodiesel percentage. The reduction of 
smoke opacity with increase of biodiesel in the fuel 
blend can be attributed to the decrease in the carbon 
content, and the increase of oxygen content, in the 
blended fuel. There is less C–C bond in the blended fuel 
with compared with more blending, resulting in the 
decrease of smoke opacity. At the same time, the oxygen 
in the fuel can assist in reducing smoke formation during 
the stage of diffusion combustion. When injection 
pressure is increased, fuel particle diameters will 
become smaller. Because formation of mixing fuel to air 
becomes better through injection period, smoke opacity 
will be less. It is very clear from the graph that for 
increasing injection pressure, the smoke emissions were 
reduced since cylinder operating temperatures were 

higher at high injection pressure. Because of higher 
temperature and pressure there is an improved reaction 
between fuel and oxygen, and thus reduces the smoke. 
Figure 11 depicts smoke opacity results for different 
polanga biodiesel blend fuels with injection pressures at 
constant full load.  
 BD40 shows the lowest smoke emissions for all the 
injection pressure 95.3%, 94%, 93.4%, 92.5% and 92% 
at 160, 180, 200, 220 and 240 bar injection pressure 
respectively, it may be due to oxygen molecule in the 
biodiesel, which helps to promote stable and complete 
combustion by delivering oxygen to the prolepsis zone 
of the burning fuel by reducing locally over rich region 
and limit primary smoke formation, results in lower 
smoke emissions. Reduction in smoke level of biodiesel 
is due to its oxygen content and small particle diameter 
of injected fuel with high injection pressure. 

 
 

 

Fig. 9. Variation of UBHC at full load with injection pressure. 

 

 

Fig. 10. Variation of NOx with injection pressure. 
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Fig. 11. Variation of smoke emission with injection pressure. 

 
 
4.4  Prediction of engine performance and exhaust 
emissions using ANN 

ANN model is considered as a sensible and reliable 
approach for non-linear problems. The input parameters 
of the network are blends of Polanga with diesel at 
different injection pressures and performance parameters 
brake specific fuel consumption (BSFC), brake thermal 
efficiency(BTE), exhaust gas temperature (Tex), carbon 
monooxide (CO), oxide of nitrogen (NOx), smoke and 
UBHC emissions are taken as output parameters. In this 
study, a computer program has been developed in 
MATLAB 2010a platform to predict brake specific fuel 
consumption (BSFC), brake thermal efficiency(BTE), 
exhaust gas temperature (Tex), carbon monooxide (CO), 
oxide of nitrogen (NOx), smoke and UBHC emissions of 
the engine. The most favorable network structures and 
statistical parameters of ANN models for diverse 
learning algorithms are given in Table 4. It was evident 
from Table 4, the prediction performances for both 
training and testing sets of performance and emission 
showed that all the approaches provided a fairly 
acceptable accuracy. Their R values were more than 
0.99. The most excellent forecast results were obtained 
by LM learning algorithm. The LM learning algorithm 
had the premier speed compared with the other learning 
algorithms and it reached to best possible solutions with 
lesser number of neurons in hidden layer. Comparisons 
of the ANN predictions and trial results for testing sets 
of output performance and exhaust emissions parameters 
are verified in Figures 12a and 12b. The most 
outstanding point here is that the prediction results are 
extremely close to the trial results  
 As shown in Figure 12, the predictive capability of 
the network for performance and exhaust emissions 
parameters was found to be acceptable. This means that 
the choice of two input parameters as influencing 
dynamics for predictions of engine performance and 
exhaust emissions provides reasonable results. The 

equations of the brake specific fuel consumption 
(BSFC), brake thermal efficiency (BTE), exhaust gas 
temperature (Tex), carbon monooxide (CO), oxide of 
nitrogen (NOx), smoke and UBHC emissions are given 
in Equations (3) to (9). 

 

 

 

 

 

 

 
 where Fi (i = 1, 2, 3, ..., n) can be calculated 
according to equation 2 in which NTi is the weighted 
sum of the inputs, and is calculated using 

NTi = (w11×IP+ w12×BD + b1)i                                   (10) 
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 The data flow was completed with the weights 
between the layers. The weight values appearing in 

Equations (3) to (9) are given in the Tables 6 and 7. 

 
 

   

Fig. 12. (a) Predicted and experimental results for testing sets of performance parameters. 

 

  

  

Fig. 12. (b) Predicted and experimental results for testing sets of emission parameters. 

 
 

Table 6. Weights between input layer and hidden layer for performance parameters. 
 i w11 w12 b1 w2 

BTE 
1 -1.606 -0.33597 0.69548 -3.5387 
2 1.9041 0.17425 0.089628 -6.3514 
3 2.3992 -0.04936 0.75344 3.2473 

BSFC 

1 -8.4865 -2.1788 7.6867 -2.3812 
2 3.9897 -7.4609 -4.8474 -0.03029 
3 6.8536 -3.178 -4.753 -4.4348 
4 5.3832 -5.2183 -2.5869 2.4336 
5 -5.7181 -5.1586 -1.6053 0.60699 
6 -1.7805 -7.7431 -3.2877 -0.40463 
7 6.2135 -5.0013 4.6958 1.9296 
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8 6.8669 -2.51 8.8412 1.8265 

Tex 

1 1.5451 -6.6139 -4.0683 -0.47135 
2 1.7902 1.8627 -2.3114 2.1142 
3 -6.7453 -0.53401 -1.2285 -1.9449 
4 -7.0123 0.59678 -0.16528 0.86299 
5 -5.9686 -1.4068 -3.2659 -0.26475 
6 5.3103 -2.0479 8.4219 -0.52849 

 
 

Table 7. Weights between input layer and hidden layer for emission parameters. 

 i w11 w12 b1 w2 

CO 

1 -4.9444 -5.166 6.6262 -2.2294 

2 4.3453 3.5113 -1.2051 2.4863 

3 1.5648 6.6333 -0.5072 -0.2532 

4 2.744 -5.7003 2.3061 -0.1959 

5 3.8648 2.9246 3.0417 2.8129 

6 -6.641 -1.0035 -6.6432 -0.1159 

NOx 

1 -7.8727 0.39004 3.466 1.1739 

2 0.19278 -1.5302 0.62291 -2.1956 

3 5.2309 1.0656 3.7598 1.1605 

4 -0.82161 5.7447 3.1143 0.56433 

Smoke 

1 2.1236 1.567 -5.9787 -2.1376 

2 21.6831 -16.1722 -3.6952 -1.7645 

3 -1.129 0.7635 -0.3215 -3.2821 

4 -0.0311 -2.783 -11.776 0.06438 

UBHC 

1 -4.0605 6.5114 11.7625 1.0639 

2 -4.5533 0.14418 -1.355 1.0155 

3 -1.675 -1.5619 -0.1434 2.1475 

4 3.142 -6.8655 7.6305 -0.3846 
 
 

Table 8. MPE and MSE for training and testing. 

Output 
MPE MSE 

training test training test 

BSFC 0.137 0.437 0.00465 0.0123 

BTE 0.3423 0.00983 0.00435 0.0147 

CO 1.22319 2.57923 0.00532 0.0169 

NOx 0.1384 0.4032 0.00462 0.0118 

Smoke 0.2028 0.1286 0.00447 0.0115 
 
 
5.  EVALUATION OF RESULTS 

The network was trained successfully and then the test 
data was used to evaluate the selected network. Using 
results obtained from the network, a comparison was 
carried out using statistical methods. The performance 
of the network was evaluated using mean percentage 
error. Mean percentage error is the mean ratio between 

the error and the experimental values. It indicates how 
large the error is related to the correct value and it is 
expressed in percentage values. The mean percentage 
errors and mean squared errors of the output parameters 
of optimum network for training and testing data are 
shown in Table 8. 
 Mean percentage errors were smaller than 2% and 
3% for training and test data respectively. Hence, the 
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results obtained from optimum ANN model may easily 
be considered to be within the acceptable limits. Lower 
value of mean percentage error shows that there is a 
better correlation between trained or tested values and 
measured values. 

6. CONCLUSION 

The different polanga biodiesel blends in the present 
work can be conveniently used in 4 stroke single 
cylinder diesel engines as blends with diesel without any 
engine alterations. Experimental examination showed 
that the injection pressure of 240 bars was found to be 
the optimum condition for engine with BD40 biodiesel, 
based on the drop in BSFC and upgrading in brake 
thermal efficiency was also observed. Biodiesel blends 
resulted in the fall in CO, UBHC and smoke emission at 
elevated injection pressures. However NOx emission 
slightly increased with increasing injection pressures. 
Among the a range of injection pressure, 240 bars 
exhibited shorter ignition delay with slightly longer 
combustion. Multilayer feed forward network with back 
propagation training algorithm was used to predict the 
performance, emission and combustion features of diesel 
engine at various injection pressures. The predicted R 
values were found to be very close to unity while the 
MSE error was less than 0.0004 for BSFC, BTE, Tex, 
CO, NOx, smoke and UBHC and revealed that there was 
good correlation between the predicted and measured 
data. Analysis of the experimental data by the ANN 
revealed that there was good correlation between the 
predicted data resulted from the ANN and measured 
ones. The developed model thus reduces the 
experimental efforts and hence can serve as an effective 
tool for predicting the performance of the engine and 
emission characteristics under various operating 
conditions with different biodiesel blends. 
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