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Abstract – The research on small scale compressed air energy storage (SS-CAES) becomes an interesting topic 
especially in optimizing the performance of the system. In this topic, the characteristic curve of the energy storage 
system is the key to control the system to reach optimum power to the load. In previous research, mathematical 
equations were used to get the characteristic curve. This paper proposes the polynomial regression based on the 
actual output data from the prototype to model the characteristic curve of the SS-CAES prototype. The authors have 
compared the use of mathematical models and polynomial regression in modeling the power curve with actual 
observational data and determining the level of accuracy of modeling. The results showed that by using polynomial 
regression, the characteristics of the SS-CAES prototype power curve could only be obtained by using the sample 
data from the system output with accuracy value 0.967 for R-square. Thus, an approach using this method would 
facilitate researchers to obtain the characteristics of the curve of the system. 
 
Keywords – modeling, optimization, polynomial regression, power curve, small scale compressed air energy storage 
(SS-CAES). 
 

1
 1. INTRODUCTION 

Energy development in this era began to become a very 
crucial topic to discuss. This problem comes due to the 
high use of fossil energy in several countries, which 
results in climate change on earth [1]. Therefore, several 
studies are focused on solving this topic and one of 
which is by utilizing renewable energy combined with 
storage technology [2],[3]. By using energy storage, 
high energy requirements can be backed up with other 
energy sources that have been stored in the past [4]. This 
stored energy is then discharged to support the load peak 
shaving on the power grid [5]–[12]. One of the 
technologies used is compressed air energy storage 
(CAES). CAES was chosen because it promises high 
reliability with low environmental impact compared to 
other energy storage technologies because it does not 
produce waste in the process of its utilization [13]–[15]. 
Besides, CAES also does not degrade over time and is 
relatively cheap on an energy base [14],[16],[17]. 
Another advantage is CAES can also be combined to 
support other renewable energy sources to solve 
problems such as low power density and an 
unpredictable nature [18]–[21]. CAES technology 
consists of two storage tank constructions: namely 
construction for large-scale and small scale technology. 
The constructions of large-scale CAES technologies are 
A-CAES, D-CAES, and I-CAES [22],[23]. This large 
scale system has a weakness; it has dependence on 
geological formations because it requires a large air 
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storage space to store energy. Therefore, the small scale-
CAES (SS-CAES) system is an alternative solution with 
more compact storage tanks, higher system portability, 
and higher adaptability even with distributed or self-
directed energy production [24], [25]. 

One topic related to the development of SS-CAES 
technology researches is optimizing the system 
performance during the process of air discharge from the 
stored tank [25]–[27], which in this case is also a topic 
that continues to be developed in various applications, 
especially in the optimization of a system at other plants 
such as renewable energy [28]–[30]. One of them is the 
research conducted by Lydia, et al. [31] where the 
modeling techniques to determine the performance 
curves of wind turbines installed in wind farms was used 
as a reference in controlling wind turbines.  

In a research using optimization topic, to transfer 
the maximum energy at the load which will be provided, 
the researcher must know the characteristics of the 
operating point of the system. The characteristics of the 
point operation are in the form of a 3D curve with three 
variables, which are power, pressure and speed of 
airmotor. By knowing the characteristic curves, the 
system can be optimized to achieve its maximum power 
transfer. The way to do it is by referring to the controls 
on the variables of the air pressure and the air motor 
speed according to the power curve to get the maximum 
power transfer. One of the studies utilizing this 
technique was carried out by Lemofouet, et al. [32]. In 
this study, SS-CAES was controlled to achieve 
maximum efficiency from the air discharge process in 
the air tank. The power curve variable used to achieve 
maximum efficiency were air pressure and air motor 
speed. In other studies such as by Martinez, et al. [33], 
the SS-CAES power curve were also used. In this study, 
SS-CAES was controlled to reach the maximum power 
point. The variables used for control were air pressure 
and air motor speed. Also, Kokaew et al.  research used 
the power curve as a reference for his control [25], [26], 
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[34]. In their study, Kokaew et al. used the characteristic 
curves of the SS-CAES formed to obtain optimal and 
maximum power transfer. The parameters used were air 
pressure and air motor speed. From several studies that 
have been mentioned, it shows that the characteristics of 
SS-CAES are essential for system control optimization. 

To know the characteristics of SS-CAES, it can be 
obtained by formulating a mathematical equation of the 
installed components. Then, some parameters needed to 
form a power curve in the mathematical equation of the 
system built [25]–[27] are entered in that mathematical 
equation. Some of the parameters are certain coefficient 
variables or certain constants of component that have 
been installed. Unfortunately, this will undoubtedly take 
a long time to know if the coefficients and constants are 
unknown and need to be measured first. Therefore, this 
paper described an alternative method to obtain the 
model of characteristic the power curve on SS-CAES 
based on empirical data derived from the prototype and 
polynomial regression instead of modeling mathematics 
from the SS-CAES system. By using this technique, the 
relationship between variables that enter the regression 
process will be found without needing to enter the 
coefficient and constants needed in mathematical 
techniques. Thus, it will make it easier to know the 
power curve by ignoring these values [35]–[37]. 

In other studies, there have been several studies 
that discussed the use of polynomial regression, to be 
able to predict the characteristics of data. Some of the 
studies included [37] used polynomial regression to 
analyze transient responses from PEM fuel cells. In 
other research carried out by Fumo et al. [38], this 
regression technique was used to predict the energy 
consumption in residential buildings. In Lydia et al. [31] 
research, this technique was also used to model the 
characteristics of wind turbine generators in certain wind 
farms. However, there has never been a study of the use 
of polynomial regression to know the characteristics of 
the curve in the SS-CAES. Therefore, this study focused 
on exploring the use of regression techniques in the SS-
CAES to model the power curve. The regression 
polynomial technique that was used in this study is to 
utilize the empirical output data from the SS-CAES. The 
output data were taken using a sampling technique, 
which were then regressed and produced an equation 
that represented the entire SS-CAES power curve. 

In this paper, the researcher had modeled the power 
curve on SS-CAES prototype with a power capacity 
50W by using empirical sampling data output. By using 
these data, the modeling of the power curve was formed 
using the regression process, then an equation that 
represented the power curve was obtained [39]. For 
validating the results of the power curve modeling in 
this paper, the modeled data were compared using 
conventional ways, which was by using mathematical 
equations and observed data obtained directly from the 
prototype to determine the accuracy of the proposed 
method. 

2.  DATA GATHERING 

The data used in this study come from observational 
data taken on a prototype that had been designed. In the 
data retrieval process, fifteen (15) data were taken to get 
the power curve parameters of SS-CAES by installing 
different load values for each sampling data. The load 
used was a resistor with several values: 9.6, 56, 100, 
122, 270, 313, 330, 364, 430, 440, 560, 600, 920, 1000, 
2200Ω. The parameters were the air pressure parameters 
passing through the air motor (pAir), the speed of the air 
motor (ω) and the power generated by the DC (P) 
generator [23]. The process of taking these parameters 
was carried out by running the prototype at the discharge 
stage of the air tank and installing different loads on 
each of its data retrieval [21] with the range of air 
pressure from 0.2 to 3 bar. 

The designed prototype is shown in Figure 1. 
There were several sensors installed in it to extract the 
power curve forming parameters from the SS-CAES. 
The first was a pressure sensor mounted after the air 
valve to measure the air pressure that passed through the 
air motor. The second was the speed sensor to measure 
the rotational speed between the air motor and the DC 
generator (shaft). The third was a power sensor which 
was a combination of current and voltage sensors. The 
results of these two sensors then were multiplied to 
obtain the power generated by the DC generator. As in 
the data retrieval process the power parameters on the 
prototype ran at the discharge stage, the data logger 
installed to the prototype was to facilitate data retrieval 
from the four sensors. 

There are four types of sensors that were used and 
implemented in the prototype. First was a voltage sensor 
which was made by using the principle of the voltage 
divider. The second was a speed sensor using a hall 
effect sensor. The third was the air pressure sensor using 
MPX 5010, and the fourth was the current sensor using 
ACS712. All sensors used had been calibrated, so the 
value that appeared in the sensor was the real value of 
the measured parameter. As to save data from all sensors 
installed, personal computers were used as dataloggers. 
The figure of the prototype that had been built can be 
seen in Figure 2. 

The data taken in this session were data when the 
system was given air with a range of 0.2-3 bar, so that 
the data obtained were 29 data for each session. Table 1 
is an example of data retrieval performed at load 560Ω.  

As for the data at the next load, the authors also 
took them using the same way and the data were saved 
in the datalogger. So, the total data received was 435 
data (15 loads x 29 data per session). For each session, 
the data taken were the same as the data contained in 
Table 1. That data were from four sensors, which were 
in the form of voltage, current, velocity and air pressure. 
Then, the the power parameter was the result of the 
voltage and current multiplication. 
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Fig. 1. Prototype scheme. 

 

 
Fig. 2. The prototype SS-CAES. 

 
Table 1. Examples of data logger at a load of 560 Ω. 
Parameter Data 1 Data 2 Data 3 Data n Data 29 
Voltage (V) 0.1 10.5 15.45 ... 59.13 
Current (A) 0.1 0.02 0.03 ... 0.11 
Power (P) 0.01 0.21 0.47 ... 6.50 
Speed (RPM) 202 1000 1623 ... 6522 
Pressure (Bar) 0.2 0.3 0.4 ... 3 

 

3.  METHOD AND EXPERIMENTAL SETUP 

3.1 Method 

The data processing method in this study can be seen in 
Figure 2 which consist of two (2) main flow blocks 
diagram. The first block is a block that is often used in 
previous research, which is a mathematical block. To be 
able to find out the power curve in the system, the 
mathematical equation for each component of the 

system needed to be found. Then each mathematical 
equation was connected into the physical relationships 
between components. After the equation was combined, 
then several parameters were entered into the formula, 
and the power curve of the system was formed. 

The second block is the method used in this study. 
It used empirical data derived from observation data 
taken directly on the SS-CAES prototype. In this study, 
fifteen (15) sampling data were taken which were then 
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divided into two sub-data. The first sub-data was the 
data used as a regression process. There are four (4) data 
from fifteen (15) data sampling data. Those data were 
two load data with small resistive values (9.6 Ω, 56 Ω) 
and two load data with big resistive values (1000 Ω, 
2200 Ω). The reason for using the sampling data on that 
load was to model the power data that passed between 
the highest and the lowest power, that occured due to the 
load by using on the resistive load. The power data 
between the highest and the lowest power could be 
predicted and known by using polynomial regression so 
that the overall power curve of the SS-CAES prototype 
can be modeled and known. 

The third block was the measured data block. This 
block was the data (11 data) that had been obtained in 
the data observation process. These eleven data were 

gotten by dividing the total of the observation data used 
in this study. The observation data were fifteen (15) data 
with four (4) of which were used for the regression 
process, so the eleven (11) data were obtained from this. 
These measured data were used as comparative 
parameter data from the success of this method, or it can 
be known as the data test from the predicted output from 
the regression process. The use of this data (measured 
data) will be used to compare output data from the two 
previous methods. So, after each power curve results are 
known in each method, the next step is to compare data 
on each result obtained with the measured data to 
determine the degree of accuracy. For more details, the 
flow of research methods in this study can be seen in 
Figure 3. 

 

 
Fig. 3. Data processing block. 

 

 Figure 4 is the flow of the regression method 
process used. After the data were obtained, the sampling 
data used to form the modelling of characteristic curves 
(four (4) data from fifteen (15) sampling data taken) 
were selected. Next, the polynomial degree was set to 
obtain an appropriate equation to represent the 
modelling curve. When the value of the degree set was 
completed, the result of the equation was evaluated 
using statistical parameters to determine the resulting 
error rate and suitability. If the results obtained when 
changing the polynomial degree were not the best 
results, then the polynomial degree was changed, and 
the process continued until it found the best parameters 
of this regression process. The parameters used were R-
square, RMSE (root mean square error) and SSE (sum 
of square due error) [40]. 
 
 

3.2. Experimental Setup 

Determining the power curve it was done in two ways. 
The first was by using a mathematical equation and the 
second was by modeling the power curve by using the 
polynomial regression approach. 

3.2.1. Mathematical Approach  

 3.2.1.1. Air Motor   

The air motor used was manufactured by Prona. To be 
able to know the characteristics of the air motor, the 
researcher must first know the characteristics of the air 
motor used by looking at the performance curve on the 
datasheet issued by the factory. The following equation 
was used to know the motor torque (M) [41]. 

𝑀 =  
1

2𝜋
.𝑉𝑔. 𝑝𝑖𝑡ƞ𝑝 . ƞ𝑚 (1) 
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where M is air motor torque, Vg is the displacement of 
the motor, Ƥit is theoretically shown pressure, ƞp filling 
efficiency and ƞm mechanical efficiency by having value 
for the piston motor with the connecting rod mechanism 
ƞp = 0.85 ÷ 0.9 and for the motor with the shear 
mechanism, ƞm = 0.9 ÷ 0.92. While to know the motor 
power of the air, Equation 2 can be used [41], [42]. 

𝑃𝑠 =  𝑉𝑔.𝑛. 𝑝𝑖𝑡 . ƞ𝑝. ƞ𝑚 (2) 

where Ps is the power of the air motor, the ƞp filling 
efficiency depends on the linearly variable velocity 
where ƞp = 1 -α.n, α expresses the inclination line, so it 
could be substituted into Equation 3 [41],[42]. 

𝑃𝑠 =  𝑉𝑔.𝑛. 𝑝𝑖𝑡 . ƞ𝑚 − 𝑉𝑔.𝑛2. 𝑝𝑖𝑡 . 𝑎. ƞ𝑚 (3) 

Air consumption (Qn) calculated for normal 
atmospheric conditions could be approximately 
calculated from Equation 4 [41],[42]. 

𝑄𝑛 =  𝑉𝑔.𝑛.
𝑝1
𝑝𝑁

. 𝛿.
1
ƞ𝑄

 (4) 

where ƞQ flow efficiency has a value between 0.85 to 
0.95 depending on the design and motor used. δ is called 
coefficient of filling, it ranges from 0.45 to 0.7, 𝑝1 is 
true value of indicated pressure and 𝑝𝑁 is the number of 
vane. 

 3.2.1.2 DC Motor Generator 

For permanent DC motors, the dynamic behavior 
generator is driven by a prime mover (an air motor) 
obtained by Newton's second law [25], as follows. 

𝑇𝑎𝑚 − �𝐵𝑚𝑎𝑚 −  𝐵𝑚𝑔�𝜔𝑟𝑎𝑚 −  𝑇𝑒𝑔

= �𝐽𝑎𝑚 + 𝐽𝑔�
𝑑𝜔𝑟𝑎𝑚
𝑑𝑡

 (5) 

where Tam is airmotor torque, while the back emf / 
torque (Eag) constant of the generator could be 
calculated by Equation 6 [25] as follows:  

𝐸𝑎𝑔 = 𝐾𝑚𝜔𝑟𝑎𝑚 (6) 

 The load torque (Teg) for an air motor was the 
electromagnetic torque generator, that was: 

𝑇𝑒𝑔 = 𝐾𝑒𝑖𝑎𝑔 (7) 

Where iag is an armature current generator, ωram is the 
angular velocity of the air motor and the generator 
incorporated in one shaft, the rag is armature resistance, 
Lag is the inductance value of the generator winding 
rotor, Vt is the voltage terminal; Ke is the constant 
torque; Km is the constant velocity, Bmam and Bmg are the 
viscous friction coefficient of the air motor and the 
respective generator and Jam and Jg are the moments of 
inertia of the air motor and generator. 

3.2.2. Regression Approach 

For modeling the power curves of SS-CAES, curve 
analysis using the linear regression technique was 
applied. Because the parameters in SS-CAES power 
curve are formed based on three variables; two 
independent variables (pressure air pressure through air 
motor (pAir) and air motor rotation speed (ω), and one 
dependent variable is power (P)). Then multiple linear 
regression was used [43]. 

 

 
Fig. 3. Data processing block. 
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 3.2.2.1 Multiple Linear Regression Analysis 

Multiple linear regression is one of the multivariate 
techniques used to estimate the relationship between one 
dependent variable metric with a set of independent 
variables of metric or non-metric. By multiple 
regression analysis, the researcher can estimate and/or 
model the average value (population) of one dependent 
variable based on two or more independent variables. 
Regression analysis will produce an equation / 
regression model [43], [44]. Multiple regression analysis 
is different from correlation analysis which only yields 
correlation value. In the correlation analysis, what is 
being analyzed is the existence of a relationship between 
two variables and how strong the relationship. Whereas 
in the analysis of multiple regression, it is how big the 
influence of a variable (hereinafter referred to as 
independent variable) to other variables (hereinafter 
referred as the dependent variable) that is being 
analyzed. 

Yj = b0 + b1X1j + b2X2j + .... bkXkj + ej (8) 

More complex can be represented as an equation: 

𝑌𝑗  = �𝑏𝑖𝑋𝑖𝑗 +  𝑒𝑗 

𝑘

𝑖=1

 

 

(9) 

where Yj is the predicted value of the dependent 
variable, bi is the regression coefficient for the predictor 
variable Xi, Xij is the case measurement j on the 
predictor variable i, k is the slope of the regression 
surface against the variable Xj and ej is the random error 
component for the i-th case [43], [44]. 

In order to know the accuracy of this technique, 
there are several statistical parameters that can be used 
as a reference in this regression process. 

3.2.3. Performance Analysis 

 3.2.3.1 SSE (Sum of Squares Due Error) 

SSE is the sum of the values of the overall quadratic 
difference between each observed value and the value of 
the group average. This parameter represents the size of 
the variation in a cluster. If all cases in the cluster are the 
same or have a small error value, then SSE will be equal 
to zero (0) [45]. 

𝑆𝑆𝐸 =  �(𝑦𝑖 − ŷ)2
𝑛

𝑖=1

 (10) 

where n is the number of data, the i is the i-th value and 
ŷ is the overall mean value.  

 3.2.3.2 RMSE (Root Mean Square Error) 

RMSE is the average value of the sum of the squares 
error, it can also state the size of the error generated by a 
forecast model. The low RMSE score indicates that the 
variation of the value generated by a forecast model 
approaches the variation in its observed value or can be 
said to have a higher degree of accuracy [45]. 

𝑅𝑀𝑆𝐸 =  �
𝑆𝑆𝐸
𝑛

 (11) 

 3.2.3.3 R-square 

R-square is the parameter used to measure the goodness 
of the regression equation or it can be said that R-square 
is the ratio between the value of the amount of error 
value predicted by the regression process 
(SSRegression, sum of squares regression error) with the 
total error or SSE. So it can be said that R-square gives 
the proportion or percentage of total variation in the 
dependent variable described by the independent 
variable. The value of this R-square is in the range 
between 0 - 1, and the model match is represented when 
R-square is closer to 1 [45]. 

𝑆𝑆𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =  �(𝑦𝑖 − 𝑦𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛)2
𝑛

𝑖=1

 (12) 

𝑅 − 𝑆𝑞𝑢𝑎𝑟𝑒 =  1 −
𝑆𝑆𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑆𝑆𝐸
 (13) 

where, yRegression is the value generated from the 
regression. 

4. RESULT AND DISCUSSION 

By using the flowchart in Figure 4, the polynomial 
regression process will be carried out. After four (4) data 
are selected, then the regression process is carried out. In 
this case (regression analysis), the best degree is 
obtained by using fifth-degree equations. For the best 
statistical parameters obtained from this regression 
process, it can be seen in Table 2. It is important to note 
that there are two results obtained from the method 
which uses the regression process algorithm flow. The 
first one is the result of fit regression data using 
statistical parameters and the second one is the equation 
which represents the modeling curve. 

 
Table 2. Statistical performance of the curve fitting. 

R-square RMSE SSE 
0.998 1.03 13.79 

 

From this statistical performance parameter, the 
regression accuracy can be determined by referring to 
parameters R-square (from Equations 12 to 13) which 
value is 0.998 or 99.8%. The square error or RMSE is 

1.03 (from Equation 11) and the total error of SSE is 
13.79 (from Equation 10). However, this parameter is 
not related to the level of accuracy that will be compared 
with all observation data (that process will be performed 
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on performance evaluation), because this statistical 
performance parameter (Table 2) is a statistical 
parameter that compares the data used for the regression 
process with the data generated through the regression 
approach, the parameter in Table 2 is a parameter that 
represents the suitability of the four (4) data used to 
form a polynomial regression equation, so the data in 
Table 2 cannot describe the predicted accuracy of the 
overall power curve to be searched for in this study. 
Therefore, the next step needs to be done. The next step 
is to enter the values of the speed (𝜔′) and air pressure 
(𝑝𝐴𝑖𝑟′) parameters in the equation that comes from the 
polynomial regression process. 

For the equation obtained from the regression 
process it can be seen in the Equation 14, where the 
equation consists of variable ω' which is the speed 
rotation of the air motor angle after through the process 
of centering and scaling, variable pAir' which is the 
pressure through the air motor after through the process 
of centering and scaling and with f (ω', pAir') is P which 
is the power generated by the generator.  

f(ω’,pAir’) = 25.79 - 9.616ω’ + 15.97pAir’ + 
12.8 ω’2 + 2.227ω’pAir’ - 3.084pAir’2 - 3.332 
ω’2pAir’ - 1.347ω’pAir’2 + 4.834pAir’3 + 
0.8784ω’2pAir’2 -0.08372ω’pAir’3 + 
0.8799pAir’4 - 0.7256ω’2pAir’3 + 1.343ω’pAir’4 - 
1.751pAir’5  

(14) 

with center and scale for ω is normalized by mean 3661 
and std 2046 and pAir is normalized by mean 2 and std 
1.018. 
Where: 

𝜔′ =  
(𝜔 − mean)

𝑠𝑡𝑑
 (15) 

𝑝𝐴𝑖𝑟′ =  
(𝑝𝐴𝑖𝑟 − mean)

𝑠𝑡𝑑
 (16) 

From that equation, the modeling curve can be 
formed and can be seen in Figure 5 which is a 
representation of the SS-CAES modeling curve 
generated by the regression process. 

 

 
Fig. 5. Curve characteristic modeling. 

 
Table 3. Statistical performance on both methods. 
Parameter Mathematical Regression 

SSE 219.401 845.746 
RMSE 0.736 1.445 
R-square 0.997 0.967 

 

In Figure 5, three axes are representing the SS-
CAES curve. The X-axis represents the speed (RPM) of 
the shaft, the Z-axis represents the pressure (bar), and 
the Y-axis represents power (W). In Figure 5 there are 
color differences. The color difference is based on the 
energy produced. Blue represents low power (0-20W), 
green represents middle power (21-40W), and orange 
represents high power (40-50W). 

For analyzing the accuracy of the curve which is 
produced by two different processes (mathematical and 
regression), a performance evaluation will be done on 
both methods. This comparing process will be done with 

all observed data that have been obtained in two ways. 
The first way is to use statistical parameters to know the 
accuracy of the techniques used based on SSE, RMSE, 
and R-square statistical parameters. The second way is 
to use the graphs in the data load to know the accuracy 
in the trend line form. For the first evaluation, the 
statistical performance was obtained from both 
approaches as shown in Table 3.  

In Table 3, there are parameters of information 
related to SSE, RMSE and R-square. In the 
mathematical curve approach, the resulting SSE is 
219.401 (from Equation 10) with RMSE is 0.736 (from 
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Equation 11) and accuracy or R-square is 0.997 (from 
Equations 12 to 13) from actual measurement. 
Meanwhile, the regression approach using polynomial 
with SSE 845.746 (from Equation 10), with RMSE is 
1.445 (from Equation 11) and the R-square value is 
0.967 (from Equations 12 to 13). From the results 
obtained show that the accumulated error (SSE) occurs 
in the regression approach is higher than the 
mathematical method. This is because the polynomial 
regression is the approximation of the model by using 
the polynomial curve function, so the value appears to 
have a curve-shaped approach. These can be seen and 
analyzed in the form of trend graphs at each load to be 
performed on the second test. 

For the second test is to compare the four power 
data generated by the polynomial regression technique 
and the mathematical approach with measured data on 
observation by using the graphic. In this test, the data 
obtained from two ways of approach (regression and 

mathematical) will be tested with two types of load data. 
The first data is the load data which is used for the 
regression process and the second data is the load data 
outside the data used for the regression. The reason why 
we should test the load data outside the data used for this 
regression process is to determine the ability of this 
regression technique to model the power curve outside 
that data. The load data used in the first type are 9.6 and 
1000 Ω, and for the second load data is 100 and 560 Ω. 
In this test, the SS-CAES parameter (the air motor speed 
rotation parameter (ω) and the pressure passing through 
the air motor (pAir)) which obtained from the 
observation process will be included in Equation 14 to 
obtain the predictive model of the power value. Then 
those data will be compared to the power data obtained 
from the observation process. The results of the 
comparison can be seen in the graphic shown in Figures 
6 to 9. 

 

 
Fig. 6. The curve approach for the load is used to form the modeling curve for 9.6Ω. 

 

 
Fig. 7. The curve approach for the load is used to form the modeling curve for 1000Ω. 
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In Figures 6 and 7, the evaluation of the curve on 
the load used as the data for the regression process 
indicates that in both loads, both methods have a good 
trend-line although the predicted results has an 

oscillating value at the modeling of power with low 
pressure which can be seen in Figure 5. While in Figure 
6, the oscillation value is seen at almost every pressure. 

 

 
Fig. 8. Curve approach for the load 100Ω. 

 

 
Fig. 9. Curve approach for the load 560Ω. 

 

In Figures 8 and 9, the evaluation of the curve on 
another load that used as data for the regression process 
shows that both methods have a good enough trends-line 
difference. Meanwhile, the model using regression has 
characteristics that are still the same as the previous 
result that has values that oscillate on the low-pressure 
power modeling seen in both Figures 8 and 9. 

As explained in the previous discussion on the first 
test of performance evaluation, the significant value of 
the SSE parameter contained in the regression approach 
is due to the use of polynomial regression. It is because 
the base of this approach is the approximation of a 

model by using curves. As the result, there is an 
oscillation of value in the curve form. These phenomena 
can be seen in Figure 7, where the oscillation values in 
the load data are very clearly visible and almost occur at 
any given pressure. It is reasonable that the RMSE value 
also has a lower value than the data generated through 
the mathematical approach. 

However, such oscillations occur only in low load 
data as in Figure 7, whereas in high load data as in 
Figure 6 (load data not used as data in the regression 
process) the value oscillation tends to be smaller 
compared to the Figure 7. 
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For the accuracy level or R-square, both 
approaches have different values. The mathematical 
approach has a value of 0.997, while for an approach 
using regression value is 0.967. 

5. CONCLUSION 

The modeling to characterize the power curves in SS-
CAES is an essential analysis tool because by knowing 
the characteristics of the curve, the operation of the SS-
CAES system can be optimized in specific power loads. 
This paper has reported how to model the power curve 
at SS-CAES using two different methods. The first 
method is using the mathematical approach and the 
second one is using the polynomial regression approach. 
Both results from each approach then will be compared 
with the measurement data directly on the SS-CAES 
prototype.  

Based on the results obtained in the performance 
evaluation step of the SS-CAES characteristic power 
curve, it is found that the polynomial regression 
approach to model the power curve has good potential. 
However, there are still problems in the oscillation of 
the curve that occurs in the specific load value. Level of 
accuracy obtained by using the regression technique is 
good enough, that is with the value of 0.967 or 96.7% to 
the observed data obtained. Thus, it can be said that by 
using this regression, the SS-CAES curve can be 
predicted and known, although the results obtained 
using this technique are still no better than using a 
mathematical approach. It happens because in the 
polynomial regression approach, there is a value 
oscillation in the form of the curve, so that the 
accumulation of errors due to the approach using 
regression is higher than the mathematical model. 
However, the use of this technique, problems to find out 
the power curve can be resolved without the need to go 
through a long process (compiling mathematical 
equations on each component and knowing the 
parameter values for each component installed). 
Therefore, the accuracy of using this polynomial 
regression technique can be developed to be able to 
produce a better level of accuracy. 
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NOMENCLATURE 

Α Inclination line 
Bmam and Bmg viscous friction coefficients of the air 

motor and the generator, respectively. 
Eag Back emf 
iag Generator armature current, ampere 
Jam and Jg moment of inertia of air motor and 

generator, kg.m2 
Km Constant speed, Rad/m 

Ke Constants torque, N/m 
N Value to n, n > 0 
P Power, watt 
pAir’ Air pressure after centering and 

scalling, bar 
pN The number of vane 
Ƥit The pressure has shown theoretically, 

bar 
Ps Power from the air motor, watt 
p1 True value of indicated pressure, bar 
Qn Air consumption 
rag Armature resistance, ohm 
Tam Air motor torque, N/m 
Vg Displacement of motor 
Vt Terminal voltage, volt 
Ω Electrical resistance, ohm 

Greek Symbols 
ω Angular velocity, Rad/m 

ω’ 
Angular velocity after centering and 
scalling, Rad/m 

ωram 
The angular velocity of the air motor 
and the generator, Rad/m 

ƞp Filling efficiency 
Ƞm Mechanical efficiency 
ƞQ Flow efficiency 
δ Coefficient of filling 

Latin Symbols 
Yi value of i 
Ŷ mean of groups 

Abbreviations 
Mean Average 
RMSE Root mean square relative error 
SSE Sum of squares error 
SSRegression Sum of squares regression error 
Std Standard deviation 
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