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Globally energy management has become a challenge and concern due to rapid 

increase in energy demand and energy security. In South Africa, electricity supply 

problems has resulted in load shedding and steep increase in electricity cost. The 

objective of this paper is to optimise the residential electricity consumption by 

scheduling the household appliances in line with the time of use (TOU) tariffs. 

This was done through a fuzzy logic electrical energy controller. The optimisation 

was achieved by varying load consumption per hour. The fuzzy rules were 

designed to make intelligent decisions considering the time of use tariff, the 

remaining daily limit and load consumption. The preferred number of days were 

set by the consumer and the system calculated the daily limit considering the 

available amount of electricity in smart meter. The findings showed that the fuzzy 

logic optimised the residential electricity consumption by scheduling the 

household appliances in line with the time of use (TOU) tariffs. The fuzzy logic 

may provide a way in which the smart meter could optimise and enhance the 

electricity user consumption. 
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1 1. INTRODUCTION 

Globally, the energy management has become the 

challenge and concern due to rapid increase of energy 

demand and energy security. Among the five sectors, 

the residential sector, in South Africa, is the second in 

electricity consumption and is responsible of about 17% 

of the total generated capacity with high contribution 

during peak demand [1]. In order to mitigate this 

increase, policy and legislations have been implemented. 

Apart from the policy documents introduced, utilities 

have further introduced the demand side management 

(DSM) initiatives such as demand response (incentive 

based and price based) to encourage the load reduction 

during peak hours. Manually, managing peak hour 

consumption is a tedious process. Also, it is difficult for 

the users to manually respond to the offered incentives 

and price-based tariffs. This paper seeks to incorporate 

the fuzzy logic controller in residential energy 

consumption to make intelligent decisions without the 

interaction of the consumer. Generally, the idea of fuzzy 

logic was designed to formalise the mathematical 

approach to deal with complex decisions. It is in form of 

many valued logics in which truth values of variables 

may be real numbers between 0 and 1 in contrast with 

the classical or discrete values of either 0 or 1 (true or 

false). Fuzzy systems are useful in two general contexts: 

in a situation involving high complex systems whose 
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behaviour is not well understood and, in a situation, 

where approximate, and where a fast solution is needed. 

 The fuzzy logic system (FLS) consists of three 

main parts linguistic variables, membership functions 

and rules. The inputs in FLS which are linguistic form 

are made from words or sentences from natural language 

and are mapped by sets of membership function. This 

process of converting the input crisp to fuzzy value is 

fuzzification. Given mapping of input crisp values to 

fuzzy membership functions and truth tables, the rules 

are made for actions to be taken based on set of rules. 

These rules are constructed to control the output 

variable. A fuzzy rule in its simplest form is a simple IF-

THEN rule with a condition and conclusion. The steps 

in reasoning of FLS is referred to as inference, which is 

the part of taking decision by combining the rules and 

input crisp of the system to generate the fuzzy output 

crisp. After inference, the overall result is fuzzy value 

which is defuzzified to obtain final crisp output. To 

design the fuzzy controller, the following steps, need to 

be followed: Firstly, the input and output variables 

whose values are in words and sentences from natural 

language are mapped with membership functions. Each 

linguistic variable has the range of expected values that 

corresponds to their terms. Secondly, the membership 

functions are numerical values corresponding to the 

linguistic terms. Membership functions defines how 

each point in a point is mapped to a membership value 

(degree of membership) between 0 and 1. There are 

several shapes of membership functions in fuzzy 

systems. The most used types and shapes are triangular, 

trapezoidal and gaussian. Thirdly, fuzzy are in series 

linguistic statements that describe how the decisions are 

made by the fuzzy controller. In fuzzy logic the 
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condition of the rule is fulfilled to certain degree, and 

each rule will influence the result of the set of rules in 

accordance with the grade of fulfilment [2]. Generally, 

defuzzification is the process of converting the degrees 

of membership of output linguistic variables within their 

linguistic terms into crisp numerical values. There are 

many defuzzification methods that can be used by the 

fuzzy controller, but the accuracy of the method depends 

on the control application. The most used methods are 

the centroids methods and the maximum of mean 

method. 

2.  THEORETICAL BACKGROUND 

To maintain the economic growth, the electricity 

demand continues to rise, particularly in South Africa, 

that is coal dominated, remains the energy intensive 

country where the electricity consumption and Gross 

Domestic Production (GDP) are directly related [3]. 

More than 70% of electricity in South Africa is 

generated by coal which contributes to an increasing 

world energy carbon emission. Usually, carbon 

emissions are high during peak periods, during which 

electricity consumption is also high. This increase has 

necessitated certain studies such as one carried out by 

[4]. Also, peak demand has been investigated by in 

recent studies (see for example [5]– [8]). To mitigate the 

ever-increasing electricity demands and rising carbon 

footprint, demand side management strategies are 

promising in addressing the shortage of electricity and 

ever-increasing carbon footprint. Demand side 

management is the process whereby an electricity 

supplier influences the way on how the electricity is 

used by customers. DSM means planning, 

implementation and monitoring of end-user activities 

designed to encourage consumers to modify timing and 

level of electricity demand [9]. In the essence, the 

consumer, during DSM, implement techniques through 

direct or indirect control [10]. Any DSM technique 

implemented may result in one of the following forms of 

electricity demand reduction: Peak clipping, valley 

filling, load shifting, strategic conservation, strategic 

load growth and flexible load shape [11]. DSM can be 

classified into two parts namely Energy Efficiency (EE) 

and Demand Response (DR). Figure 1 shows the 

strategies of DSM. DR is classified into two main 

categories and subcategories of incentive bases ad price-

based techniques. 

 

 

Fig. 1. Strategies of demand side management. 

 

 EE is the DSM tool which is used to reduce energy 

consumption by replacing normal appliances by energy 

efficient appliances [12]. While EE is defined in [13] as 

the theoretical minimum energy requirement for 

performing task and amount of actual energy used. 

Authors in [5], [14] define DR as the changes in 

electricity usage by the end user from their normal 

consumption patterns in response to changes in 

electricity price over some period of time. The core 

element of DR schemes is to motivate customers to 

change electricity usage through incentives offered by 

the utility company. DR schemes are classified into two 

types namely incentive based scheme and price-based 

scheme [15]. 

2.1 Incentive based Scheme 

Studies put forward by [15] explains that in incentive 

based the customers are encouraged to reduce their 

energy consumption upon request or according to the 

contractual agreement. It is the agreement between the 

customer and the utility company, which provides the 

program administrator some degree of authority to 

directly schedule, reduce, or disconnect to save cost. 
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2.2 Price based Scheme 

In price based, the customer is offered time varying rates 

that reflect the value and cost of electricity for different 

time periods [6]. The retailers offer the time varying 

tariffs such as Time of Use (ToU), Real Time Pricing 

(RTP) and Critical Peak Pricing (CPP). In ToU the 

electricity price depends on the time of the day and is 

pre- established and set in advance. On one hand, ToU 

pricing divides the day into intervals and charges a fixed 

rate with each time frame, while on the other hand CPP 

is a variant of ToU in which, especially during 

emergency situations such as high demand, the price is 

substantially raised. However, in RTP, electricity prices 

can change as often as hourly, reflecting on the utility 

cost of the supplying energy to customers at that specific 

time. 

3.  PEER REVIEW 

The use of demand response strategies has emerged as 

powerful DSM tool to optimise the energy consumption 

pattern of consumers and simultaneously improve the 

overall efficiency at the energy market [6]. However, in 

order to achieve these benefits from DR programmes a 

certain level of automation is required both for 

uncertainty in consumer response to price signals and 

complexity for consumer to react to fluctuating daily 

electricity price [16]. The integration of wireless 

sensors, optimisation techniques (artificial intelligent 

technologies), mathematical models to make intelligent 

decisions that link RTP and or TOU incentives with 

energy efficiency was recently studied. 

 Optimisation-based Automatic Demand Response 

(ADR) controller was implemented in home energy 

management system to optimally co-ordinate the 

operation for different types of domestic appliance in 

response to dynamic electricity pricing [17]. The authors 

in [6] presented the mathematical game theory-based 

model which was developed to achieve an efficient 

price-based demand response technique so as to 

maximise benefit for both consumers and utilities. In 

this study, the utility sets the price and the consumer 

responds to it accordingly. The mathematical 

programming language Automated Demand Response 

(ADR) was presented by [16] to try and find the best 

scheduling of controllable appliances across a finite time 

horizon in a single day.  This was done to minimise the 

daily bill below the willingness of the consumer. The 

model predictive control (MPC) framework was 

designed to optimally determine the control profiles of 

HVAC systems as demand response was presented in 

[18]. In this study, a nonlinear autogressive neural 

network that models the thermal behaviour of building 

zone with an optimal control problem was formulated by 

mixed integer nonlinear programming (MINLP).  

 Authors in [19] proposed an intelligent optimal 

energy management system for reducing potential 

energy waste during the start-up of a fuel cell system. In 

their study, they designed an intelligent optimal energy 

management system. Their system could be applied to a 

realistic hybrid power system, which incorporates 

adaptive fast-charging control, fuzzy hydrogen control, 

and fan temperature control. Most of the studies in 

energy management system (EMS) were done from the 

generation of power perspective. Evident of such studies 

are as discussed in [20] and [21]. A multiperiod artificial 

bee colony optimization technique was implemented by 

the authors in [20] for economic dispatch, considering 

creation, storage, and responsive load offers. The 

suggested method outperformed the modified traditional 

EMS in terms of performance, and its effectiveness is 

empirically demonstrated on a microgrid test bed. 

artificial bee colony with many periods of activity. In 

[21], the authors use dynamic programming method to 

solve the problem of determining the best power split 

between the two sources of energy, with realistic cost 

calculations for all power trajectories for the combined 

APW generator, electric machines, and battery 

efficiencies, as well as a penalty function formulation 

for the deviation from the ideal state-of-charge to be 

sustained. However, their approach did not address 

intelligent, complex decision making using fuzzy logic 

controller which this study seeks to address by 

incorporating the fuzzy logic controller in residential 

energy consumption. 

 The fuzzy logic approach (FLA) utilising the 

wireless sensors and smart grid incentives has been 

presented in [22] for load reduction in residential HVAC 

system. The FLA is embedded into PCTs for intelligent 

decision in load reduction while maintaining the thermal 

comfort considering price, outdoor temperature and 

occupancy. Other developments in the analysis 

performance of dynamic thermostat controller of HVAC 

system in home with dynamic electricity pricing were 

studied in [23]. Based on price signal, the dynamic 

thermostat controller would set the thermostat 

temperature to save electricity and cost. 

 Generally, most of studies in DSM, focused on 

demand control and in predicting the users` behaviour 

and monitoring the HVAC systems against the argument 

that HVAC systems are the most consuming load [22]-

[24] in buildings. However, the consumption of other 

daily used electrical appliances can also add up and 

increase of energy consumption in the building.  

Inclusion of these devices or appliances in energy 

management can lead to effective energy saving. It is 

observed from the studies as presented in [6], [16], [18] 

that, mostly, mathematical models have been used in 

finding solutions towards demand side management 

problems. However, these models usually become 

limited when the size of the problem increases with high 

computational complexity and nonlinear relationship 

between inputs and outputs. Although most studies show 

positive results in load reduction during peak period, 

managing the peak to average ratio, it may also have a 

negative impact on load diversity which might 

potentially result in new peaks for the least price [16]. 

The authors in [5] devised a system based on 

organisational multi-agent system (MAS) for distributed 

control system. The system addressed peak load 

problem using cyber-physical system. The system was 

composed of Energy Supply Node (ESN) that has 

maximum energy level and number of controlled 

devices to it. Also, the authors in [6] maximised peak 
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load reduction for residential and commercial sector by 

10% and 5% respectively by their game theory applied 

to model price-based demand response with three tire 

pricing models (real time pricing, time of use and day 

night pricing). 

 The authors in [8] investigated the potential of 

consumers in lowering the community level peak 

demand by regulating the air conditioner use with 

operation of time shifted appliances. The model 

predictive control (MPC) scheme minimised peak air 

conditioning energy use by altering the thermostat set 

point in individual homes while scheduling the operation 

of appliances was done by applying mixed integer linear 

program (MILP).  Within this ambit of methodology, 

there is a need to manage daily used appliances using 

the system that will provide the accurate control of 

electricity consumption, not only during peak period but 

also reach the optimal operation of electrical 

management. Authors in [24] presented an adaptable 

local control and intelligent decision making for a home 

automation using multi-agent techniques. Each agent 

used a fuzzy logic controller to manage consumer`s 

energy consumption taking into consideration all kinds 

of residential load.  They designed a scheduling policy 

algorithm AG0 that made joint decisions with respect to 

the user comfort and desire. The developed AG0-FLC 

successfully altered the load curve shape and results 

showed the energy saving up to 58% of the total 

residential energy consumption during times of high-

power demand.    The integration of adaptive neuro 

fuzzy inference system (ANFIS), cost generator (CG), 

economic model predictive controller (EMPC) and 

Hidden Markov Model was investigated in [25] to 

model behaviour and compute the sum of personalised 

cost, time of use charges prediction from load curve and 

fixed energy of heat, ventilation and air conditioning 

(HVAC) in their personalised energy management 

system (PEMS). In essence, the EMPC optimised the 

energy consumption using the constrained optimisation 

routine which included the comfort margins specified by 

occupant. The behaviour not only did rely on 

temperature, humidity, but also relied on historical 

information based on occupant and behaviour. The 

results of PEMS showed energy consumption reduction 

of 9.7%-25% and cost reduction for 8%-18.2%. 

 Consumer demand for renewable energy sources 

such as solar and wind has recently risen rapidly around 

the world. Renewable energy encompasses a wide range 

of energy sources, such as wind energy, water energy, 

and solar energy [26]. Although South Africa (SA) is 

recognized to have a high renewable energy potential, 

there has been no systematic investigation to determine 

this power generation potential.  Among all the available 

energy sources, in SA, solar energy has a potential of 

being the main source of energy, should government 

make policies towards research and development. The 

development will call for more advanced IT-based 

monitoring systems as pointed out by authors in [26]. 

Furthermore, authors in [26] addressed the challenge of 

customer risk by proposing a smart grid utility that 

knows the precise generation of each renewable resource 

at a given period. Their shortfall was in addressing 

customer privacy, and issue which was later proposed by 

authors [27] - [28]. In [27], a survey was done on 

different smart metering to address customer privacy. 

The survey led authors to propose an operational 

metering that addresses attributable fine-grained 

measurements. Their utility, known as “Differential 

Privacy based real time Load Monitoring approach 

(DPLM)” maintains consumer privacy by concealing 

load values in such a way that the utility is unable to 

assess the consumption of specific renewable energy 

resources or the daily routine of any smart meter user 

and proposed an improved customer privacy by 

categorising their privacy studies based on type of 

measurements. 

4.  METHODOLOGY 

This paper, based on design science research 

methodology, designed a fuzzy based energy 

optimization system to optimise and enhance the 

residential electricity consumption based on the current 

values of the input variables. The input variables 

included the load consumption, remaining daily limit 

and electricity price. Triangular membership functions 

were used in this paper. The load consumption was the 

manual fuzzy logic controller input while price was in 

real time. Given the scenario, the used electricity was 

calculated by the model system in real time as electricity 

was consumed during the day. The desired number of 

days was set before the simulation with the desired 

amount of electricity. The system calculated and 

allocated the daily limit using the available electricity on 

a smart meter. The simulation was run for 24 hours. 

4.1 Problem Formulation 

The research design followed in this paper was the 

design science research methodology mapped with the 

current work as shown in the following Figure 2. 

4.2 System Design 

The MISO heuristic rule based fuzzy controller and 

fuzzy system were designed and implemented using the 

fuzzy controller and visual instrument (VI) coding that 

are programmed in LabVIEW 2019. 

4.3 Designing the Fuzzy Logic Controller 

The fuzzy logic controller consisted of three main parts 

namely: linguistic variables, membership functions and 

rules. To design the fuzzy controller, we followed the 

following steps: 

4.3.1   Identifying the input and output variables 

The values of the input and output variables are in words 

and sentences from natural language and mapped with 

membership functions. Each linguistic variable has the 

range of expected values that corresponds to their terms. 

For example, in this paper, variable price includes terms 

peak, standard peak and off peak while the output load 

status includes terms such as ON or OFF. 
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Fig. 2. Design science research mapped with current work [29], [30]. 

 

4.3.2. Creating and labelling the membership 

functions 

The triangular membership function has been chosen for 

its simplicity and it is computationally fast. In our paper 

there were four inputs and based on their combination, 

the output was obtained. The membership functions and 

mathematical expression for the input variables are 

shown in figures below. 

a) Input 1: Load consumption in kwh 

The consumption of the load was identified as the one of 

the variables that had an impact in high usage of energy 

and thus increasing energy cost in households. For that 

reason, the input control was sampled to a total 

consumption of 15 kw/h. The consumption amount was 

converted to percentage in respect to the remaining daily 

limit using Equation 1. 

 
(1) 

 The membership function parameters for the 

consumption were sampled as shown in Figure 3 where 

the range was restricted to between 0 to 100%. 

 

b) Input 2: Electricity Price (P) in cents 

Advanced meter infrastructure (AMI) normally known 

as smart meters has an advantage of providing the 

consumers with the real time energy consumption, 

energy cost information to assist the customers on how 

they can effectively manage their consumption. 

Reducing consumption during peak periods can result in 

cost and high demand reduction. In this paper, to 

facilitate the two-way communication that AMI is 

capable of, Figure 4 shows the membership functions of 

electricity price read from the smart meter during peak, 

standard and off-peak periods. The prices are fixed in 

cents for each period and charged per second. 

Three membership functions in Figure 4 were 

designed to separate the demand response tariffs namely 

off-peak costs of 15c, standard costs of 45c, and peak 

cost of 80c. 

Fuzzy logic controller was designed  to manage the 

available amount of electricity as desired by the 

consumer for a given time frame and enhance the 

electricity consumption by scheduling the household 

appliancces in response to the Time of Use (ToU) tariffs 

The three parameters for the time of use tariffs 

used in this paper are tabulated on Table 1. 

 

 

Fig. 3. Appliance load consumption MF. 
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Fig. 4. Electricity price MF in cents. 

 

 

Fig. 5. Remaining electricity daily limit MF. 

 

 

c) Input 3: Remaining daily electricity limit in 

kwh 

The prepaid meter for this study was chosen with the 

amount of electricity and user’s desired number of days. 

The remaining electricity daily limit was calculated by 

subtracting the used electricity from the initial daily 

limit. The remaining daily limit in percentage became 

the input of fuzzy controller with three triangular 

membership functions (less, enough and adequate), and 

the word “enough” refers to moderate for this study as 

shown in Figure 5. 

d) Output: Load Status (LS) 

The load status was the output of the controller. Figure 6 

shows the membership function of the of system output. 

The defuzzified value of the output specified if the 

appliance should be ON or OFF during that particular 

period based on aggregation of outputs from all the 

defined rules. For presentation purposes in this study, 

the ON and OFF values were converted to percentage. 

4.3.3 Building fuzzy rules 

The state evaluation fuzzy rules in this study were 

derived using the heuristic method in which the 

collection of rules was formed by analysing the 

behaviour of the controlled process. The summary of 

designed rules in this study as shown in Table 2. 

 There are many variables that can fulfil the 

objective to optimise and enhance the electrical energy 

consumption but for this paper only the price of 

electricity, load consumption, remaining electricity of 

the electricity for the day and consumer desired number 

of days to use given amount of electricity for period of 

time were investigated. The rules were fired using the 

min-max method (AND) where the minimum value of 

the antecedents was taken to enable the controller to fire 

more than one rule condition at the same time but with 

varied strengths. The rules are structured as follows: 

Rule 2: IF Consumption is “Medium” AND Price is 

“Off-peak” AND Available Electricity is “Adequate” 

THEN Load Status is “ON”. 

4.3.4  Choosing deffuzzification method  

Center of gravity also known as the center of area or 

centroids method has been chosen the suitable method 

for the controller by its capabilities of no large change in 

output with small change in input and defuzzified output 

lied in the middle of the support of resulting 

membership function and had a high degree of 

membership function. 

Table 1. Parameters for the price tariffs. 

Price Time Parameters in cents 

Off Peak 22:00-07:00 15 

Standard  

07:00-08:00 

10:00-18:00 

20:00-22:00 

45 

Peak 
08:00-10:00 

18:00-20:00 
80 
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4.3.5 Simulation (Rule testing) of the fuzzy 

controller 

The final step in designing the fuzzy controller is to test 

the rules if they meet the objective of the system. The 

test system command on LabVIEW fuzzy system design 

was used to test the relationship between the input and 

output variables. The input variables were set manually, 

and the controller calculated the weight of input 

variables to assign the output value. For this paper every 

output greater or equal to 50% is true, that is the 

appliance is ON else condition is false. 

 

 

Fig. 6. Load status of the appliance MF. 

 

 
Table 2. Summary of designed fuzzy logic controller rules. 

Rule Load Consumption Price Remaining Daily Limit Load Status (Output) 

1 Low   ON 

2 Medium Off-Peak Adequate ON 

3 Medium Off-Peak Enough ON 

4 Medium Off-Peak Less OFF 

5 Medium Standard Adequate ON 

6 Medium Standard Enough ON 

7 Medium Standard Less OFF 

8 Medium Peak Adequate OFF 

9 Medium Peak Enough OFF 

10 Medium Peak Less OFF 

11 High Off-Peak Adequate ON 

12 High Off-Peak Enough ON 

13 High Off-Peak Less OFF 

14 High Standard Adequate ON 

15 High Standard Enough ON 

16 High Standard Less OFF 

17 High Peak Adequate OFF 

18 High Peak Enough OFF 

19 High Peak Less OFF 

 

5.  SIMULATION SCENARIOS AND RESULTS 

Table 3 shows the summary of the invoked rules as 

represented from Figure 7 to 12. 

5.1 Scenario 1: Off Peak Price and Adequate 

Electricity 

The data presented in Figure 7 was from a selected 

period in the morning from 04:49:10 to 06:59:01. The 

figure below represents the medium load consumption 

of electricity during the off-peak periods from 04:49:10 

to 04:54:10 and from 05:02:31 to 05:03:01. There was a 

change in load consumption to high between 04:58:00 to 

05:02:31. From 04:54:10 to 04:57:30 and from 05:02:31 

to 06:59:01 the load consumption was low. Data show 

that the remaining daily limit was adequate and that 

allowed the load status to be “On” throughout the 

selected period. The low and medium load consumption 

occurred at different times during this selected off peak 

period. 
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Table 3. Summary of simulation rule involved. 

Time Frame Condition Rule Invoked 

04:59 – 07:00 Off-peak price and adequate electricity 1, 2, 3, 11 and 12 

07:00 – 08:00 Standard price and adequate electricity 1, 5 and 14 

08:00 – 10:00 Peak price and adequate electricity 1, 8 and 17 

10:00 – 15:32 Standard price and enough electricity 1, 6 and 15 

15:32 – 18:00 Standard price and less electricity 1, 7, and 16 

18:00 – 20:00 Peak price and less electricity 1, 10 and 19 

20:00 – 22:00 Standard and less electricity 1, 7 and 16 

22:00 – 23:59 Off-peak and less electricity 1, 4 and 13 

 

 

 

Fig. 7. Off peak price and adequate electricity. 

 

5.2 Scenario 2: Standard Price and Adequate 

Electricity 

The off-peak period ended at 07:00:00 as presented in 

Figure 7. Figure 8 presents the standard tariffs from 

07:00:00 to 08:00:00 and the daily limit was adequate. 

Data presented show the linear approach to load 

consumption from low, medium and high. Data show 

that from 07:00:00 to 07:10:00 the load consumption 

was low. There was a shift from low to medium load 

consumption at 07:10:00. Thereafter, from 07:10:00 to 

07:22:02 load consumption was medium. There was 

another shift at 07:22:02 from medium to high load 

consumption, from 07:22:02 to 07:59:02 the load 

consumption was high. Data show that the load 

consumption increased from low to high and continued 

to increase till the end of the selected period. This 

suggests that the fuzzy logic enabled system scheduled 

the consumption towards off peak price periods. 

 

 

Fig. 8. Standard price and adequate electricity. 
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5.3 Scenario 3: Peak Price and Adequate Electricity 

Figure 9 presents the data that continued from Figure 8. 

From 08:00:02 to 08:01:01 the load consumption 

dropped from high to low and the load status changed 

from “off” to “on”. The change was due to fuzzy logic 

rules that restricted medium and high load consumption 

and only allowed the low load consumption when the 

price tariff was in the peak period. Data showed that 

there was a constant load consumption during the 

selected peak period. This suggests that the fuzzy logic 

enabled system scheduled the consumption towards 

peak price periods. 

5.4 Scenario 4: Standard Price and Enough 

Electricity 

Figure 10 presents the data when the price tariff changed 

from peak to standard. When this happened there was a 

change in remaining daily electricity limit from adequate 

to enough from 10:30:06 to 15:30:07. Data showed that 

from 10:00:00 to 15:30:07 the load consumption was 

constantly high and the load status was “on” throughout 

the selected period. There was a noticeable decrease in 

the remaining daily electricity limit during this period 

due to high load consumption. 

 

 

Fig. 9. Peak price and adequate electricity. 

 

 

 

Fig. 10. Standard price and enough electricity. 

 

5.5 Scenario 5: Standard, Peak Price and Less 

Electricity 

Figure 11 is the continuation of Figure 10 and presents 

the results when the price tariff was standard between 

15:32:15 and 18:00:00 and from 20:00:00 to 22:00:00, 

peak from 18:00:00 to 20:00:00, off peak from 22:00:00 

to 23:59:46 for the selected data period. In this regard 

the remaining daily electricity limit was set to less. From 

15:32:15 the load consumption dropped to low load 

consumption due to fuzzy rules that do not allow 

medium and high consumption when the remaining 

daily electricity limit was less and the load status 

remained “off”. At 23:59:46, the remaining daily 

electricity limit was recalculated and reloaded in 

preparation for the following day. The results showed 

the load status resumed to be “on” and no load 

consumption was restricted during this period. 

http://www.rericjournal.ait.ac.th/
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Fig. 11. Standard, peak price and less electricity. 

 

 

 

Fig. 12. 24-hour simulation graph. 

 

Figure 12 shows the collected data over 24 hours in 

five scenarios of price tariffs and remaining daily limits. 

The different fuzzy controller rules were invoked for 

different scenarios and varied appliance load 

consumption. The invoked rules with each scenario are 

tabulated on Table 3. The data shows that when 

electricity is less, the appliance load consumption were 

restricted even though it was it automatically switched 

to 10% of remaining electricity daily limit. The 

limitation of fuzzy in this study is that when electricity 

is less it shuts off the appliances. 

6.  CONCLUSION 

The simulator enabled us to investigate the opportunities 

using the scheduling of load consumption to save 

electricity consumption and costs under different 

scenarios. Time of Use tariff and daily limit were 

applied. The 24-hour period was simulated to 

demonstrate the optimisation of electricity consumption 

considering the price and amount of electricity 

remaining for the day. The results showed that fuzzy 

logic can optimise the residential load consumption by 

scheduling the household appliances as desired by the 

consumer considering the time of use tariffs and amount 

of remaining daily electricity. The study concludes that 

fuzzy logic systems may inconvenience the user when 

the available daily electricity limit is less and allow for 

low load consumption. 
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