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In this paper, we explore how machine learning can be used to improve battery 

safety in an machine learning thermal management system, with a focus towards 

cloud battery safety analytics. Describing how critical the battery fire hazard 

mitigation is, the aim of this study is to make predictions of real values set as 

temperature by comparing predicted values based on three machine learning 

models used as linear regression, decision tree and random forest. The 

experimental results were analyzed based on performance metrics (explained 

variance), training time and prediction time for lithium iron phosphate 

(LiFePO4), The Random Forest model the most accurate demonstrated by the 

highest R² (0.997), least MSE (0.0024) and least MAE (0.026). Learning curve 

and action taken curves confirm superiority of random forest model. the decision 

tree (R² = 0.99 0 and MSE Lowest belonging model) also gave good results as 

were already in earlier models. Linear regression (fastest, least accurate with an 

R² of 0.604) The results of this research highlight how essential cloud-based 

battery safety analytics are in harvesting ML driven methodologies for ideal 

mitigation of fire hazards and recommend for the use of ML particularly random 

forest model so as to operate energy storage systems reliably. 
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 1. INTRODUCTION 

Due to the increasing use of renewable energy and 

greater electrification across multiple sectors, there is a 

growing worldwide need for energy storage systems, 

especially batteries. This increasing demand illustrates 

the importance of sophisticated and dependable battery 

technologies. The issues related to renewable sources 

intermittency and variability actually support the shift 

towards cleaner power. This demand also presents new 

challenges especially in relation to improving battery 

safety. Modern constructions, along with the growing 

energy density, raise concern for the thermal and 

chemical properties of the battery, meaning greater and 

more innovative solutions are needed. Improved safety 

measures are required because of the ever-changing 

energy storage technology landscape. One of the 

technique for such a solution is the application of 

machine learning (ML) as a means for proactive and 

real-time analysis with the aim of identifying, 

monitoring, and mitigating the safety risks of using the 

battery. The objectives behind this approach is to ensure 

the world is able to transition without concerns over 

capabilities for the energy that needs to be stored while 
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in place to introduce an ML thermal management device 

for enhanced battery safety [1]. 

Lithium-ion batteries underpin our daily lives but 

are a serious safety hazard. These batteries pack a lot of 

power into a small volume, which can make for compact 

and powerful devices, but also makes them vulnerable to 

thermal runaway and potential fires. When a battery 

fails, it can cause disastrous events such as fires and 

explosions with extremely dangerous impacts on both 

users and property. To ensure safe operation requires a 

multi-pronged approach, and thermal management is 

critical to this process. When in operation, batteries 

generate heat due to the build up of internal resistance or 

external influences such as high charging or discharging 

currents or extreme ambient temperatures. A proper 

thermal management system is employed to ensure the 

battery cells are maintained at an optimal temperature 

and to avoid thermal runaway, a process in which 

temperatures increase causing a chain reaction of cell 

failure which may lead to fire [2]. 

Phase change materials (PCMs) are a very 

promising solution for regulating battery temperatures. 

Its feature of absorbing and releasing heat generated 

during phase transitions is what makes it most attractive 

to the thermal management sector. The importance of 

safety of the PCM is stressed in both material stability 

research and system hazards, as it is true both and the 

thermal stability of the selected PCM and the design of 

the whole system are very significant to prevent 

potential hazards. Selection of materials must take the 

preference of PCMs with high thermal stability which 

can protect them from degradation at operating 

temperatures. Furthermore, the system design will need 
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to incorporate technology that will address safety 

hazards arising from thermal runaway or material 

leakage. 

1.1 The Causes of Lithium-ion Cell Failure 

The root of the problem of lithium-ion cell fails is 

several factors that interact far more intricately. 

According to Faraday insights, the main mechanical 

stress, thermal abuse, and electrical issues are the factors 

that dominate, Figure 1. However, in addition to these 

internal cell faults, defects in production or impurities, 

the cell can over-discharge/charge and even age without 

these being the whole reason. The proper identification 

of the causes and the corresponding remedy necessitate 

a comprehensive strategy including a strong cell design, 

the production of quality goods, viable Battery 

Management Systems (BMS), and user-friendly 

equipment [3]. In this way, only these are the 

prerequisites that will allow us to make sure that the 

very safety and lifespan of these indispensable 

equipment are guaranteed. Lithium-ion cells are capable 

to fail due to various problems that can be classified into 

three main groups: mechanical, thermal, and electrical. 

 

 

Fig. 1. Lithium-ion cell failure: a closer look. 

 

 

1.1.1 Mechanical causes of lithium-ion cell 

failure 

Even if lithium-ion cells energy density is stable 

enough, mechanical integrity still remains the one main 

thing that is responsible for their safety. Their safety can 

be compromised when there are some internal defects 

like the ones that are caused by the technology of the 

production of microscopic cracks, impurities, or 

misalignments. A short circuit may be the result of in-

house defects that are found in cell materials such as a 

separator located between the positive and negative 

electrodes. The mechanism of fixing the tear in 

separators, the physically thin non-conductive films, is a 

good idea to follow, as well as a deal with negative 

electrodes. Physical impairment might take place due to 

crushing, puncturing, or severely bending the metal. 

That way, the cell's vitality emerges as weaker by 

experiencing mechanical impairments that cause a short 

circuit besides the separator's injury. 

1.1.2 Thermal causes of lithium-ion cell failure 

Thermal management is another critical aspect of 

lithium-ion battery safety. Very high air temperatures 

from outside sources such as a fire or faulty chargers can 

result in a short circuit in the lithium-ion battery. High 

charging/discharging currents and the production of 

defects are other consequences of the internal physical 

phenomenon of the electrolyte heating that the heat is 

liberated through which the cell being affected by the 

heat becomes life-threatening. Runaway temperatures in 

chemicals are dangerous in that they cause a sequence of 

events where overheat first makes a cell component 

decompose which in turn becomes a source of more 

heat. This results in extremely quick temperatures that 

can lead to electrolyte materials and gases being pushed 

around unfavorably thus accounting for either a 

combustion or an explosion. 

• Internal defects: Explains how manufacturing 

imperfections and separator compromise can lead 

to short circuits. 

• Physical damage: Mentions crushing, puncturing, 

and bending as potential causes of mechanical 

failure. 

• Thermal runaway: Provides a step-by-step 

explanation of the process, highlighting the 

dangers of heat generation, component breakdown, 

and gas release. 

1.1.3   Electrical causes of lithium-ion cell failure 

• External shorts: A metallic piece connecting 

between the positive and negative terminals or 

shorts down in the middle of the cells provides a 

path having very low resistance for very high 

currents that would cause quick heating. over spun 

cells may even catch fire. 

• Overcharging: Incorrect charger along with a 

badly designed cell can dump an excessive amount 

of energy into the cell which eventually results in 

internal heating, cathode breakdown, and potential 

thermal runaway. It is easy to fry the battery if the 

positive and negative ends mix up.  

Every single of these failures may provoke a number of 
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events which can result in the fire, explosion, or in the 

worst case - the death of a person. Constant research 

into these causes and their avoidance will call for clever 

design, good manufacturing, proper battery 

management, and user awareness. 

1.1.4 Knee point 

Knee point is a critical point for batteries and indicates 

an inflection in the life cycle with a sharp drop in the 

capacity, Figure 2. A highly nonlinear aging or capacity 

plunge. An unexpected and a sudden change will be 

visitor the next time the cell's performance curve is 

drawn, and the changes in radiation will be the primary 

factors for this condition and similarly have a large 

impact on the internal structure of the cell, which loses 

the heat in the end, causes thermal runaway, and the cell 

fails without effectiveness in managing this abrupt 

change. 

 

 

Fig. 2. Knee point signifies a sharp inflection in battery performance. 

 

 

 

Fig. 3. Cloud-based analytic utilize the entire spectrum of battery diagnostics. 

 

1.1 Cloud-based Analytic 

Cloud-based analytics has enhanced the diagnosis of 

batteries in comparison to the traditional rule-based or 

logic-based battery management systems (BMS). Why 

by using all the data that the virtual diagnostics can 

provide, the proactive correction of the irregularities will 

be ensured, apart from that, the big data cloud tools will 

provide the most accurate forecasts. Unlike rule-based 

BMS systems that necessitate a preset threshold, cloud-

based analytics enable the system to evolve and learn 

from the real time data so as they become more flexible 

and responsive to battery diagnostics, Figure 3. The 

application of this invention to the diagnosis of the 

problems and their solving will thus be the driver to the 

standardization and longevity of the battery in the 

success of this system through the harnessing of the 

data-based and predictive capabilities. 

2. REVIEWING EXISTING THERMAL 

MANAGEMENT SYSTEMS 

A comprehensive review of existing thermal 

management systems and their limitations, coupled with 

an exploration of machine learning (ML) applications in 

battery systems, is essential. 

2.1 Thermal Management Systems 

Kaliaperumal report [4] finds out how much crucial 

management of heat is in making batteries precipitate 

and thus create risks in transportation and the building. 

Chen et al. [5], on the other hand, disclose a 

comparative study of the major cooling approaches that 

are quite popular, along with their strengths and 

shortcomings. Referring them Wang et al. [6] 

emphasizes security, longevity, and just like in the 

results are the most important reasons for thermal 
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management of batteries. In contrast, Lin et al. [7] 

present the major active and the passive cooling 

methods while Huang et al. [8] are concentrated on the 

role of phase change materials (PCMs) for which they 

are proud of the passivity of thermal management. Fire 

hazard mitigation by Sebastian [9] brings out the natural 

fire risks inherent in lithium-ion batteries and the need 

to remove batteries by implementing mitigation 

strategies. 

2.2 Machine Learning Applications 

The researchers from Ch.Sreedevi et al. [10] extent a 

ML procedure towards battery life prediction, at the 

same time, Huang et al. [11] concentrate on the optimal 

feature-targeting pairs for battery health diagnosis. Also 

the studies of Jia and Xu [13], Shen et al. [14], and Hu 

et al. [15] show that machine learning algorithms are 

more efficient in short circuit resistance estimation, 

safety risk classification, and safety risk prediction, 

respectively. Measuring the perspectives of these 

enlightening papers, it can be said that they together 

guide the reader to understand the challenges faced in 

thermal management, the fire risks, and the potential of 

ML in addressing them. 

3. MACHINE LEARNING-DRIVEN THERMAL 

MANAGEMENT  

Building a machine learning-based thermal management 

system for batteries is a multi-layered, step-by-step 

process. It starts with the problem's clear definition, 

outlining objectives, and identifying the key parameters 

for optimization. The data collection process includes 

collecting historical as well as real-time data on the 

battery temperature, voltage, current, and atmospheric 

conditions. Feature selection plays a vital role in the 

whole process, where various aspects, such as 

temperature gradients and charging rates, are taken into 

account after which a particular set of data tuples are 

conventionally preprocessed by such operations as 

handling missing data and feature normalization. The 

preliminary step of model selection is the choice of the 

right machine learning algorithm, which uses models 

with ensemble techniques like Random Forests. During 

the required process, the selected model will be trained, 

validated, and integrated into a real-time monitoring 

system so that data analysis becomes continuous. The 

AI-based control mechanism dynamically regulates the 

process by adjusting the cooling and heating levels on 

the basis of the ML predictions, and it contains also an 

anomaly detection part that is designed for improved 

safety. Integrating with the battery management system 

(BMS) is the first step in making the system more 

functional, and in the case of the application of edge 

computing there can be also low latency. 

Overall, the process is designed to be iterative, 

with simulation and testing to ensure robustness, and a 

continuous improvement cycle that includes a feedback 

loop for learning and updates. Data documentation and 

reporting defines the design and performance and is 

finally deployed in a controlled environment. As a result, 

the focus is on scalability and generalization, as it 

should be applicable to various battery types and sizes. 

The whole system architecture includes several 

mutual working components for the precise control of 

temperature, Figure 4. Core components consist of 

battery modules fitted with sensors for temperature, 

voltage and current, as well as environmental sensors 

that track ambient conditions [14]. Based on ML 

predictions, active cooling systems and heating elements 

utilize two active heat exchange elements that generate 

temperature adjustments. The optional edge computing 

device directly processes ML algorithms to reduce 

latency, while the BMS supports communication and 

scheduling time windows and provides charging data. 

ML model predicts battery temperature, and control unit 

performs adaptive real–time adjustments. The key stages 

in terms of data flow are collection, preprocessing, 

feature extraction, model training, and continuous on-

line monitoring. Subsystems with interfaces - 

communication with BMS and cooling systems, edge 

computing with feedback loop for learning and scale 

towards various types of batteries While detailed 

documentation is the basis of robust reporting, 

integration of the experimental battery data set improved 

prediction accuracy and system optimization. This 

comprehensive architecture ensures efficient thermal 

management, guaranteeing optimal battery performance 

and safety. 

3.1 Experimental Data and Features for Machine 

Learning Model Training 

Experimental datasets that are the subject of this study 

provide necessary foundation for understanding 

operational behavior of lithium iron phosphate (LiFePO4) 

batteries and it captures useful information across a 

variety of operational profiles that can be used to create 

a predictive model for battery temperature. Features of 

importance for battery performance assessment, Figure 

5. 

The experiment tested a cylindrical Lithium Iron 

Phosphate (LFP) battery in a single experiment at this 

cold start state of 4°C for three different operational 

profiles. The charge process followed a first constant 

current phase of 1.5 Amps until the cell reaching a 

voltage close to 3.65 V then it went into a constant 

voltage phase stopping when current tapered to 20 

milliamps for discharging. Using a dynamic 0.05 Hertz 

square wave load, to mimic real world usage and hence 

show how the battery would respond to varying power 

demands. We used the dataset for a very thorough 

investigation of the thermal dynamics and load cycling 

effects on the battery. 

In other words, the model consists of 

'Voltage_measured', 'Current_measured', 'Current 

charge', 'Voltage charge', and 'Time'. Battery electrical 

characteristics as described by voltage and current 

measurements are directly available, whilst information 

on the charging occurring can be understood through 

measurements of charging current and voltage, Table 1. 

Adding time enables the model to learn temporal 

features, which is echoed in earlier works [12]. 
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Fig. 4. Machine learning driven system architecture. 
 

 

 

Fig. 5. Battery test bench. 

 

Table 1. Battery data heads. 

Voltage_measured Current_measured Temperature_measured Current_load Voltage_load Time 

4.1976 0.0008 4.3802 0.0004 0 0 

4.1967 -0.0009 4.2662 0.0004 4.212 9.312 

4.0063 -0.9976 4.4075 1 3.471 23.703 

3.9840 -0.9938 4.5730 1 3.451 37.312 

3.9664 -0.9945 4.6964 1 3.435 51 

3.9515 -0.9962 4.8282 1 3.425 64.609 

3.9384 -0.9948 4.9069 1 3.415 78.25 

3.9269 -0.9936 4.9789 1 3.402 91.875 

3.9165 -0.9953 5.1158 1 3.397 105.547 

 

3.2 Integration of ML Algorithms for Real-time Fire 

Hazard Detection 

Use of real-time fire hazard detection through machine 

learning (ML) algorithms is an advanced technique to 

improve safety and reduce risks. Algorithms (i.e. linear 

regression, decision tree and random forest) help us to 

have an extensive study of different causes behind fire 

hazards. Linear regression is a starting point providing 

only the linear relationship among variables, decision 

trees are good at identifying intricate patterns from the 

data. As the name implies, random forest algorithm is 

essentially a combination of multiple decision trees that 

are used together for both improved accuracy and 

resiliency. To make these ML algorithms work together 

is in fact a live fire detection system with real time 

analysing of potential danger points for a fire. This 

cutting-edge method not only adds a defense in depth to 

prevention but provides scalable approach that can 

easily accommodate different environments and 

situations therefore greatly strengthening total fire safety 

protocols. 
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3.2.1    Linear Regression 

Linear regression models the relationship between a 

dependent variable (y) and one or more independent 

variables (X) using the equation: 

 (1) 

where: 

y: Dependent variable 

β: Intercept 

β1: Coefficient for independent variable x 

x: Independent variable 

ϵ: Error term 

For multiple independent variables (x1, x2, ..., xn), 

the equation becomes: 

 (2) 

Where x1, x2,…,xn are the independent variables. 

3.2.2   Decision Tree 

Decision trees predict target variable values by learning 

decision rules from data features. The model is 

represented as: 

 
(3) 

Where: 

f(x): Prediction for input x. 

M: Number of leaf nodes. 

cm: Predicted value for the region Rm. 

I(x∈Rm):  Indicator function (1 if x belongs to  region 

R_m, 0 otherwise) 

3.3.3    Random Forest 

Random forest combines multiple decision trees to 

improve prediction accuracy. The final prediction is the 

average of individual tree predictions: 

 
(4) 

Where: 

ŷ : Predicted value. 

N: Number of trees in the forest. 

fi (x): Prediction of the ith tree for input x. 

Random forest enhances accuracy and robustness 

by constructing multiple decision trees, each trained on 

a random subset of data and features. This approach 

effectively reduces overfitting. 

3.4 ML Model Deployment to Google Cloud for 

Battery Safety 

Deploy all machine learning models using Google 

Cloud services for real-time temperature prediction to 

enhance battery safety through a flask web application 

Algorithm 1: Deployment of Machine Learning Model 

on Google Cloud for Temperature Prediction and 

Battery Safety  

1 Inputs: 

2 - Trained Machine Learning Model (MLM)   

3 - Input Temperature Data (ITD)   

4 Outputs: 

5- Predicted Temperature Values (PTV)  

6 /*Step 1: Flask Application Setup/* 

7 - Install required Python packages using:   

&nbsp;&nbsp;&nbsp;&nbsp;`pip install Flask 

google-auth google-cloud-aiplatform`   

8 -Create a Python file `app.py` to host the web 

application.   

9 - Import necessary libraries:   

&nbsp;&nbsp;&nbsp;&nbsp;`Flask` for web service, 

`google-cloud-aiplatform` for Google Cloud 

interaction. 

10 /*Step 2: Defining the API Endpoint/*  

11 - Initialize the Flask application:   

&nbsp;&nbsp;&nbsp;&nbsp;`app = 

Flask(__name__)`   

12 - Create an endpoint `/predict` that listens for POST 

requests.   

13 - Ensure the endpoint accepts JSON data containing 

temperature inputs. 

14 /*Step 3: Model Loading and Prediction Setup/* 

15 - Establish a connection to Google Cloud AI 

Platform using appropriate credentials.   

16 - Ensure the deployed model is ready for inference. 

17 /*Step 4: Prediction Execution/*  

18 - On receiving a POST request at `/predict`:   

&nbsp;&nbsp;&nbsp;&nbsp;a) Extract input 

temperature data (ITD). 

&nbsp;&nbsp;&nbsp;&nbsp;b) Format ITD 

according to the model’s input requirements.   

19 -Call the deployed model using Google Cloud’s 

Prediction service.   

20 -  Receive the predicted temperature values (PTV).   

21 - Construct a JSON response containing PTV.  

22 /*Step 5: Local Testing/* 

23 - Run the Flask app locally on `localhost`.   

24 -Use testing tools (e.g., `Postman`, `curl`) to send 

POST requests to the `/predict` endpoint. 

25 /*Step 6: Application Deployment on Google 

Cloud/*  

26 -(Optional) Containerize the Flask app using a 

`Dockerfile` for portability.   

27 - Deploy the Flask app on Google Cloud using 

Google Cloud Console or `gcloud` CLI.   

28 - Set up appropriate environment variables and 

networking rules for public access. 

29 /*Step 7: Functional Testing and Monitoring/*  

30 - Post-deployment, test the `/predict` endpoint using 

sample temperature data.   

31 - Monitor API performance and model inference 

accuracy using Google Cloud’s built-in tools. 

32 Return: 

- Real-time predictions of temperature values from 

the deployed machine learning model to enhance 

battery safety. 

3.5 Cloud-Based Battery Safety Analytics 

Battery safety analytics using predictive temperature 

modeling to foresee possible issues before they are 

reported in battery cloud control algorithms Battery 

security analytics use predictive analytics to read 

temperature modeling beforehand and stop great 

occasions before they transpire. When used in concert to 

observe temperature variance and apply predictive 
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analytics, these systems can predict temperature trends, 

identifying abnormalities from expected behavior. With 

the help of control algorithms, real-time adjustment can 

be made to reduce overheating or other safety violations 

inside a battery system. This more defensive mode of 

play will help warn of potential dangers early, 

preventing fires and reducing down time leading to 

critical intervention. These observations mitigate the 

operational reliability and mitigate expensive due 

outages of battery-powered applications with fast 

response time to safety issues. Combined with cloud 

analytics and machine learning models into a 

comprehensive implementation for improving battery 

safety, helping to ensure the safety of energy storage 

system operation. 

3.6  System Configuration  

All models were trained on MacBook Pro with a 2.2 

GHz Quad-Core Intel Core i7, 16 GB of 1600 MHz 

DDR3 RAM and Intel Iris Pro with 1536 MB dedicated 

memory. All experiments were conducted using 

Anaconda (version 2024.06) as the development 

environment.  

4. RESULTS 

4.1 Learning Curves 

Learning curves are graphs that depict how your models 

performance (as measured by error) is trending and 

changing with the amount of data it is trained on. 

Training size: the x-axis, errors on the training data (y 

up), errors on the validating data (down). 

• Linear Regression: 

We expect training error to keep on going down with 

more data, as the model learns linear relation. High 

variance in complex models can cause validation error 

to plateau or increase. For simpler models like linear 

regression, underfitting is more common than overfitting, 

Figure 6. 

 

 
Fig. 6. Learning curve - linear regression. 

 

• Decision Tree: 

Training error goes down with more data, but problems 

of over fitting are a lot greater. Plots of validation error 

can rise sharply when we have very deep trees, Figure 7 

with more data. 

 

 
Fig. 7. Learning curve - decision tree. 
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• Random Forest: 

Aggregating multiple decision trees to reduce the role of 

over fitting than one tree. Learning curve as it the 

training and validation error starts decreasing slowly 

with more data, Figure 8. 

 

 
Fig. 8. Learning curve - random forest. 

 

4.2  Action Taken Curve  

• Linear Regression: The more linear response, 

Actions Take incremental changes or drops over 

time as the predicted temperatures plateau out a 

little, Figure 9. 

• Decision Tree: May step-wise with actions may 

change abruptly at certain temperature thresholds 

(Figure 10) For more of the trees: Typically look 

somewhat smoother (this is the result of 

aggregating different decision trees) 

• Random Forest: Random forest, generally 

smoother behavior, (due to averaging the decisions 

of multiple decision trees) as shown in Figure 11. 

4.2.1   Interpreting action taken curves 

• Sensitivity: Steepness curve suggests model 

depends more on temperature changes. A steeper 

curve means the model is much more variable. 

Pearson correlation between current and 

temperature was 0.78, confirming the observed 

thermal rise with higher currents. 

• Thresholds: The points where the curve changes 

direction are temperature thresholds in a model, 

these points signal when to perform a specific 

action, such as a parameter change. 

 

 
Fig. 9. Action taken curve - linear regression. 
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Fig. 10. Action taken curve - decision tree. 

 

 

 
Fig. 11. Action taken curve - random forest. 

 

 
Fig. 12. Histogram of residuals -a) linear regression, b) decision tree, c) random forest. 

 

4.3 Histogram of Residuals 

Look into residuals distribution (actuals vs predicted) A 

better model performance, more symmetric and centered 

around zero distribution of the residuals in general. An 

example of visual checks of histograms that indicate 

Random forest has closer to normally distributed 

residuals, Figure 12.  

4.4 Scatter Plot of Actual vs Predicted Temperatures 

Take correlation of points between scatter-plot and 

diagonal line. Examine how aligned the points in scatter 

plot are to the diagonal line. Closer alignment indicates 

a better prediction. Random forest model looks to 

visually capture a closer fit around the diagonal line (as 

per visual inspection means more precise predictions). 
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The fact that we do have pretty tight grouping around 

the diagonal line translates to an excellent correlation 

indicating that the Random forest model is producing 

accurate and repeatable temperature predictions. which 

also shows its robustness for temperature forecasting 

usage case across domains, Figure 13, Figure 14, Figure 

15. 

 

 
Fig. 13. Scatter plot of actual vs predicted temperature - linear regression. 

 
Fig. 14. Scatter plot of actual vs predicted temperature - decision tree. 

 
Fig. 15. Scatter plot of actual vs predicted temperature - random forest. 

 

4.5 Table Comparing Actual vs Predicted 

Temperatures 

Look at the individual data points for particular 

examples in the table to see how well each model can 

predict these specific instances. In Table 2, Random 

forest seems to provide predictions that are very close to 

the actual temperatures over instances.  
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Table 2. Comparison of actual and predicted temperatures for different machine learning models. 

Model Actual Temperature Predicted Temperature 

Linear Regression 5.1299 5.8421 

7.2151 6.4268 

10.5028 9.8418 

7.3508 7.9293 

6.0842 5.5639 

5.8285 5.535 

6.2011 5.6807 

8.2629 7.1368 

6.8713 7.4774 

6.7162 6.16 

Decision Tree 5.1299 5.0766 

7.2151 7.2251 

10.5028 10.4445 

7.3508 7.4814 

6.0842 6.0953 

5.8285 6.2079 

6.2011 6.1979 

8.2629 6.6518 

6.8713 7.5122 

6.7162 6.5331 

Random Forest 5.1299 5.1549 

7.2151 7.2179 

10.5028 10.5908 

7.3508 7.3546 

6.0842 6.0812 

5.8285 6.0659 

6.2011 6.2011 

8.2629 7.8439 

6.8713 7.2787 

6.7162 6.5339 

 

 

4.6 Model’s Accuracy and Reliability 

Below in Table 3, gathers the performance metrics of 

the linear regression, decision tree and random forest 

models back to back for battery temperature prediction 

highlighting the accuracy and reliability of these. 

Random forest outperforms decision tree and other 

models with the lowest MSE and highest R2. Random 

forest training time (0.594343) recorded on 6000 

samples with n_estimators = 50, max_depth = 6. 

Random forest demonstrated superior predictive 

performance compared to all baseline models. 

 

 

Table 3. Model’s performance summary. 

Metric Linear regression Decision tree Random forest 

MAE 0.500353 0.042477 0.026466 

MSE 0.354672 0.008709 0.00242 

RMSE 0.595544 0.093321 0.049192 

R² 0.604414 0.990287 0.997301 

MAPE 0.09376 0.008454 0.005152 

Explained Variance 0.605298 0.990287 0.997304 

Training Time (s) 0.001802 0.009724 0.594343 

Prediction Time (s) 0.001057 0.00123 0.019116 
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4.5.1    Analysis 

• Linear Regression: The worst of the group of 

models in terms of errors (all in MAE, MSE, 

RMSE), but also the least reliable. Nevertheless, it 

is the fastest to train and to make predictions on. 

• Decision Tree: The one with the greatest training 

predicting speed but gave the less errors and also 

has good R2, explained variance meaning better 

accuracy.  

• Random Forest: Lowest error and highest R2, 

explained variance which makes it as the most 

precise and solid model. But it takes way too long 

to be trained and predicted because of the difficulty 

and ensemble of the model. 

5. CONCLUSION 

Best performance: The three models (linear regression, 

decision tree and random forest) were assessed to 

predict battery temperatures and the random forest 

performed best. this is taken from multiple evaluation 

metrics and easily interpretable Explained variance 

training time prediction time, etc. 

 Stable power: Random forest model was found to 

have one of the highest performance throughout 

multiple evaluation metrics, which further validate it as 

the best model for temperature prediction. 

Early warnings: This machine learning approach 

could be used to create early warning signs for thermal 

hazards, allowing timely response and prevention of 

fires and recovery time. 

Research consultation towards safety: Finally, this 

work provides essential battery safety research and 

innovations on the use of machine learning as a 

transformative tool to safeguard energy storage, that has 

the potential to safely scale fire risk mitigation.  

5.1 Broader Applicability 

Beyond battery types: The proposed framework was 

validated for LiFePO4 cells. Extension to other 

chemistries like NMC or LCO will require domain 

adaptation or transfer learning. 

Diverse Applications: Explore the potential of 

adapting the approach for temperature prediction in 

various applications beyond batteries, such as thermal 

management of electric vehicle components or power 

electronics. 
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