

Enhancement of Physical Properties and Energy Costs in Bagasse Pellets using Agro-waste Additive

www.rericjournal.ait.ac.th

Weeranut Intagun* and Tipapon Khamdaeng^, 1

Abstract – This study investigates the improvement of physical characteristics and energy costs in bagasse pellets using agro-waste additives. The additives were coffee grounds (CG) and corn cobs (CC), with varying proportions. The bagasse pellets were evaluated according to the standards set by the Pellet Fuels Institute. The results demonstrate that increasing the additive content significantly improved both bulk density and durability. The study revealed that the addition of coffee grounds and corn cobs at 5% improved the physical properties compared to no additives (0%). The bulk density values increased by 5.06% for coffee grounds and 3.13% for corn cobs. Furthermore, the durability values increased by 0.76% for coffee grounds and 0.37% for corn cobs. However, coffee ground additives enhance the quality of pellet fuel more effectively than corn cob additives. Due to the fine and uniform particles of coffee grounds, this results in reduced void spaces between the particles. Additionally, the coffee grounds act as a natural binder during the densification process, which enhances the durability of the pellets. It was shown that the energy costs associated with the production process of bagasse pellets using additives decreased. The reductions were 8.32% for coffee grounds and 7.55% for corn cobs. Thus, the agro-waste additives were coffee grounds and corn cobs, which improve the physical properties of the pellet. Additionally, the additives lower energy costs and enhance the performance of bagasse-based biomass pellets, providing an energy solution for a sustainable energy future.

Keywords – Bulk density, coffee grounds, corn cob, energy costs, natural additives.

1. INTRODUCTION

The demand for alternative energy is rising due to the depletion of fuel reserves. Additionally, the use of fossil fuels contributes to global warming and the greenhouse effect. There is a need for alternative energy sources to replace fossil fuels. Biomass is the organic material that can be converted into energy. Its advantages include a suitable heat value for producing heat or electricity [1]-[4]. As such, biomass energy has garnered ongoing interest and research as a viable alternative energy source to fossil fuels, as well as an environmentally friendly option. Thailand is one of the countries with significant biomass potential. Every year, it generates waste materials from the agricultural sector, including bagasse, cassava roots, rice husks, palm kernel shells, cassava pulp, corn cobs, and rice straws, along with wood chips. This also includes waste from industrial plants that process agricultural products and waste generated by communities [5]-[7]. The material that remains after juice extraction is called bagasse. This fibrous substance is a type of lignocellulosic biomass and consists of the leftover parts of sugarcane, which often contain high moisture levels. Bagasse is an

DOI: https://doi.org/10.64289/iej.25.03A11.6902771

¹Corresponding author;

Tel: +66 53 875 000, Fax: +66 53 878 113.

E-mail: tipapon@mju.ac.th

important by-product of the sugarcane industry and can be utilized to produce renewable fuels. Using biomass to produce heat directly has limitations, including asymmetrical shape, storage space, and high transportation costs. Thus, biomass conversion technology is crucial for improving the quality of biomass fuels [8]-[11]. Currently, the pelletization is a focus because it offers several advantages, including uniform shape, lower moisture content, higher density, durability, reduced transportation costs, and lower storage costs [11]-[14]. The purpose of adding additives during the pellet fuel production process is to modify the physical and chemical properties of biomass for optimal combustion. Additionally, certain additives can help reduce the rate of slagging formation that occurs during biomass combustion. Additives are a substance added to biomass to improve its properties and performance, which can be categorized into two distinct types: natural additives and synthetic additives. Natural additives tend to have lower material costs and are more environmentally friendly compared to synthetic options. However, it is essential to determine the appropriate quantity to be added, which typically falls within a range of approximately 15%, depending on the type of additive used. Corn cobs and coffee grounds are effective biomass sources that can serve as natural additives to enhance the physical properties and chemical composition of biomass fuels. Additionally, these natural additives are suitable for use as sustainable fuels and environmentally friendly alternatives [15]-[18]. Corn cobs are the hard cores left over after the corn kernels have been harvested as agrowaste additives. The chemical composition of corn cobs includes cellulose, hemicellulose, and lignin. Additionally, corn cobs have the potential to be used as biomass fuel for

©2025. Published by RERIC in International Energy Journal (IEJ), selection and/or peer-reviewed under the responsibility of the Organizers of the "17th International Conference on Science, Technology and Innovation for Sustainable Well-Being (STISWB 2025)" and the Guest Editor: Prof. Pradit Terdtoon of Chiang Mai University, Chiang Mai, Thailand.

^{*}Department of Mechanical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand.

[^]Faculty of Engineering and Agro-Industry, Maejo University, Chiang Mai, 50290, Thailand.

heating production. Coffee grounds are a byproduct of coffee production and have potential as a renewable fuel source [18]-[21]. This research aims to investigate the use of coffee grounds and corn cobs as additives to improve the physical properties of bagasse pellets and reduce energy production costs. Various proportions of each additive will be tested. The bulk density and durability will be analyzed following the PFI Standard.

2. RESEARCH METHODOLOGY

2.1 Raw Materials and Production Processes

In this research, the raw material was bagasse. The additives considered in this study were coffee grounds and corncob, both of which are agro-waste. After the drying process, the bagasse achieves a moisture content between 14%. The moisture content of the coffee grounds and corncob was below 10%. After the drying process, the materials were ground to a particle size of 5 mm. The reduction of particle size biomass is called the grinding process. The study investigated the effects of these additives at three different ratios: 1%, 3%, and 5%. The pelletizing process was conducted using a flat-die pellet mill, maintaining a die temperature of 70°C. Following the pelletizing process, the samples were subjected to cooling at room temperature, specifically 25°C.

2.2 Physical Properties Testing

The bulk density and durability were evaluated using the PFI Standard. The bulk density test was conducted according to ASTM E-873-08. Bulk density was calculated using Equation 1.

$$\rho_{bulk} = \frac{W}{V} \tag{1}$$

where ρ_{bulk} is bulk density (kg/m³), W is the total weight of the samples (kg), and V is the volume of the standard box (m³)

Durability is the ability of a material to remain intact under various handling conditions. The EN 15210-1 standard for the tumbling method was utilized to assess durability. The durability can be calculated using Equation 2.

$$PDI = \frac{WPW}{IW} \times 100 \tag{2}$$

where *PDI* is pellets durability index (%), WPW is the weight of the samples after tumbling (g), and IW is the weight of the samples before tumbling (g).

Additionally, the mass yield of biomass pellets can also be calculated using Equation 3.

$$Y_m = \frac{M_T}{M_O} \times 100 \tag{3}$$

where Y_m is mass yield (%), M_T is the mass before pelletizing (g), and M_O is the mass after pelletizing process (g).

2.3 Energy Cost Analysis

In this study, the analysis of energy costs can be divided

into two processes: the grinding process and the pelletizing process. The grinding machine is illustrated in Figures 1. A flat-die pellet mill machine for the pelletizing process is illustrated in Figures 2.

Fig. 1. The grinding machine.

Fig. 2. The pellet mill machine.

Both machines used in pellet production require electricity, which significantly contributes to the energy costs of pellet production. Equation 4 calculates the energy consumption involved in the pelletizing process.

$$E_p = \frac{E_{use}}{W_f} \tag{4}$$

where E_p is energy consumption (kWh/kg), E_{use} is total energy (kWh), and W_f is final weight of samples (kg).

Moreover, the total energy consumption was also calculated using Equation 5.

$$E_{total} = E_G + E_P \tag{5}$$

when E_{total} is the total energy consumption of pellet production (kWh/ton), E_p is the energy consumption for pelletizing (kWh/ton), E_G is the energy consumption for

grinding (kWh/ton).

3. RESULTS AND DISCUSSION

3.1 Physical Characteristics of Pellets

The physical characteristics of pellets of bagasse samples with additives is illustrated in Figures 3. The additives used are coffee grounds, referred to as "CG," and corn cob, referred to as "CC". The properties of the pellets were examined at additive ratios of 1%, 3%, and 5%. In addition, the bagasse pellets with coffee grounds at these ratios are referred to as "CG1%," "CG3%", and "CG5%," while those with corn cob are referred to "CC1%," "CC3%," and "CC5%." The results indicate that the bagasse pellet without any additives (0%) exhibits cracks on its external surface. The results indicate that the bagasse pellet without any additives (0%) has cracks on its external surface. On the other hand, the pellet samples that included additives displayed similar physical characteristics. As the proportion of additives increased, the cracks on the external surface were reduced, and the texture appeared shinier. Additionally, it was found that the addition of coffee grounds resulted in a shinier texture compared to the corn cob pellets. Furthermore, the colour of the pellets containing coffee grounds was darker than that of those made with corn cobs.

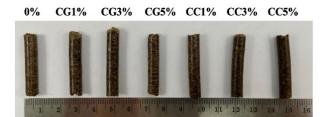


Fig. 3. The physical appearance of bagasse pellets with coffee grounds and corn cobs at 1%, 3%, and 5%.

3.2 Bulk Density of Pellets

Figure 4 illustrates the relationship between additive addition and bulk density values. The average bulk density of bagasse pellets without additives (0%) is 684.34 ± 5.76 kg/m³. When bagasse pellets are added with coffee grounds at 1%, 3%, and 5% by weight, the average density values are $692.79 \pm 8.93 \text{ kg/m}^3$, 701.51 \pm 4.76 kg/m³, and 718.96 \pm 5.45 kg/m³. Furthermore, the bulk density of pellets with corn cob are 692.99 ± 6.47 kg/m^3 , 700.34 ± 1.33 kg/m^3 , and 705.76 ± 1.73 kg/m^3 . The experimental results indicated that adding coffee grounds and corn cob significantly increased the bulk density compared to samples made without additives (0%). Additionally, the bulk density of pellets with 5% coffee grounds increased by 5.06%, while the increase for corn cobs was 3.13%, compared to pellets without additives. The uniform and fine particle size of coffee grounds enhances efficient packing during compression process, which reduces void spaces and increases structural cohesion, leading to denser and more mechanically stable pellets [12],[23]-[24]. Thus, increasing the quantity of additives demonstrates a

positive effect on the bulk density pellets across all examined cases.

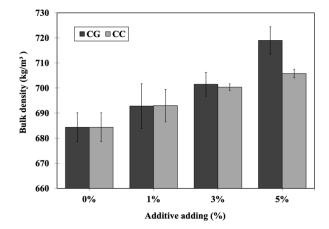


Fig. 4. The bulk density of pellets with the additive of coffee grounds and corn cobs.

3.3 Durability of Pellets

The impact of adding coffee grounds and corn cob on the pellet durability is illustrated in Figure 5. The results indicate that the durability without additives is $98.45 \pm$ 0.01%. When coffee grounds are added at 1%, 3%, and 5%, the durability values are $98.82 \pm 0.07\%$, $99.01 \pm$ 0.01%, and 99.20 \pm 0.01%, respectively. Similarly, the durability of bagasse pellets with corn cob added at 1%, 3%, and 5% is measured at $98.54 \pm 0.20\%$, $98.76 \pm$ 0.01%, and $98.81 \pm 0.07\%$, respectively. These experimental results demonstrate that the durability of bagasse pellets with both additives at 1%, 3%, and 5% by weight shows significant improvements compared to bagasse pellets without any additives (0%). The addition of coffee grounds at a 5% concentration showed the highest durability values. Furthermore, the durability values increased by 0.76% for coffee grounds and 0.37% for corn cobs. However, coffee ground additives enhance the quality of pellet fuel more effectively than corn cob additives. The result of this research has shown that pellets made from coffee grounds are more durable than those made from corn cobs. This increased durability is attributed to the fat and oil content in coffee grounds, which acts as a natural binder during the densification process. The heat and pressure conditions of pelletization cause the components of the biomass to partially melt, helping to fuse adjacent particles. Furthermore, the lipids and polysaccharides in coffee grounds can create thermoplastic conditions when compressed, which enhances interfacial adhesion and improves durability.

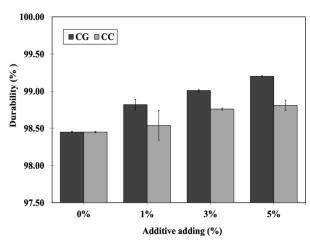


Fig. 5. The durability of pellets with coffee grounds and corn cobs at 1%, 3%, and 5%.

3.4 Yield of Pellets

The impact of adding an additive on the mass yield of bagasse pellets was demonstrated in Figure 6. The mass yield of pellets without additives (0%) was at 97.33 \pm 0.28 %. The results indicated that the mass yield of pellets with coffee grounds at 1%, 3%, and 5% by weight were 97.56 \pm 0.31 %, 97.75 \pm 0.34 %, and 99.43 \pm 0.25 %, respectively. Furthermore, the results demonstrated that the mass yield of bagasse pellets with corn cob added at 1%, 3%, and 5% were 97.75 \pm 0.25%, 98.32 \pm 0.21%, and 98.58 \pm 0.11%, respectively. The experimental results indicated that both types of additives enhanced the mass yield. Adding 5% coffee grounds resulted in the highest mass yield, a 10% increase compared to the pellet without additives.

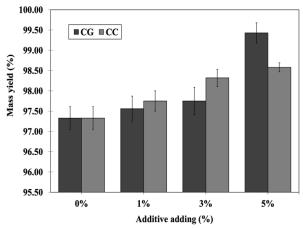


Fig. 6. The mass yield of pellets using coffee grounds and corn cobs at 1%, 3%, and 5%.

3.5 Energy Analysis of the Production Process

The impact of adding an additive on energy consumption during production is illustrated in Figure 7. The energy consumption to produce pellets without additives is noted to be 128 kWh per ton. A comprehensive evaluation was conducted to assess the energy consumption of bagasse pellets when combined with coffee grounds at varying percentages of 1%, 3%, and 5%. The measured energy consumption values were

119.67 kWh/ton, 119.34 kWh/ton, and 117.35 kWh/ton. Additionally, the energy consumption of bagasse pellets mixed with corn cob was 119.35 kWh/ton, 118.95 kWh/ton, and 118.34 kWh/ton. Both additives were found to influence energy consumption of pellets production process. As the amount of additive increased, the energy consumption value tended to decrease. In addition, the addition of 5% coffee grounds resulted in an 8.32% reduction in energy consumption, while the incorporation of corn cobs led to a 7.55% decrease when compared to fuel without additives. The impact of the addition on energy costs was illustrated in Figures 8. The energy cost of producing bagasse pellets without an additive was 770 baht per ton. Moreover, the energy costs associated with pellets blended with coffee grounds at concentrations of 1%, 3%, and 5% were recorded at 737 baht/ton, 736 baht/ton, and 728baht/ton, respectively.

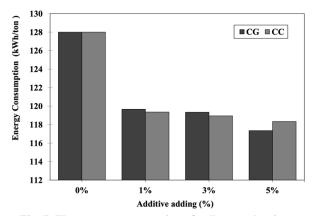


Fig. 7. The energy consumption of pellets production process with coffee grounds and corn cobs at 1%, 3%, and 5%.

Additionally, the energy costs with corn cob were 736 bath/ton, 735 bath/ton, and 732 bath/ton, respectively. Both additives significantly impacted energy consumption. As the amount of each additive increased, energy costs generally decreased. Furthermore, the addition of 5% coffee grounds led to a substantial reduction in energy costs.

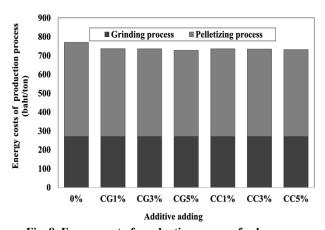


Fig. 8. Energy cost of production process for bagasse pellets with additives

©2025. Published by RERIC in International Energy Journal (IEJ), selection and/or peer-reviewed under the responsibility of the Organizers of the "17th International Conference on Science, Technology and Innovation for Sustainable Well-Being (STISWB 2025)" and the Guest Editor: Prof. Pradit Terdtoon of Chiang Mai University, Chiang Mai, Thailand.

4. CONCLUSIONS

The study revealed that the addition of coffee grounds and corn cobs at 5% improved the physical properties compared to no additives (0%). The bulk density values increased by 5.06% for coffee grounds and 3.13% for corn cobs. Furthermore, the durability values increased by 0.76% for coffee grounds and 0.37% for corn cobs. %. Furthermore, the durability values increased by 0.76% for coffee grounds and 0.37% for corn cobs. However, coffee ground additives enhance the quality of pellet fuel more effectively than corn cob additives. Moreover, the addition of 5% coffee grounds resulted in an 8.32% reduction in energy consumption, while the incorporation of corn cobs led to a 7.55% decrease when compared to fuel without additives. From this research, the coffee grounds and corn cob can improve pellet quality. Furthermore, it can lower energy costs in the production process. Therefore, these promising additives enhance both the performance and economic feasibility of bagasse pellets.

ACKNOWLEDGEMENT

The authors sincerely thank the Silpakorn University Research, Innovation, and Creative Fund, along with the Department of Mechanical Engineering at the Faculty of Engineering and Industrial Technology, Silpakorn University, Thailand, for financial support.

REFERENCES

- [1] Ostergaard P.A., Duic N., Noorllahi Y., and Kalogirou S., 2020. Latest progress in Sustainable Development using renewable energy technology. *Renewable Energy*, 1154-1562.
- [2] Kumar I., Feng K., Sun L., and Bandaru V., 2022. Adoption of biomass for electricity generation in Thailand: Implications for energy security, employment, environment, and land use change, *Renewable Energy* 195: 145-1467.
- [3] Chen C., Bi Y., Huang Y., and Huang H., 2021. Review on slagging evaluation methods of biomass fuel combustion. *Journal of Analytical and Applied Pyrolysis*, 155.
- [4] Dhyani V. and T. Bhaskar. 2018. A comprehensive review on the pyrolysis of lignocellulosic biomass. *Renewable Energy*, 219.
- [5] Unchaisri T., Fukuda S., Phongphiphat A., Saetia S., and Sajjakulnukit B., 2019. Experimental study on combustion characteristics in a CFB during co-firing of coal with biomass pellets in Thailand. *International Energy Journal*.
- [6] Kanoksilapatham W., Ogawa M., and Intagun W., 2020. Effects of clay and temperature on the slag formation of two biomass fuels: Wood from Acacia mangium and rhizome residual from Manihot esculenta. *Renewable Energy* 156: 213-219.
- [7] Kongchouy P., Tia W., Nathakaranakule A., and Soponronnarit S., 2021. Assessment of seasonal availability and spatial distribution of bio-feedstock

- for power generation in Thailand. *BioEenergy Research*, 1-21.
- [8] Chen X., Liang J., Liao P., Huang W., and Chen J. H., 2021. Effect of process parameters and raw material characteristics on the physical and mechanical quality of sugarcane bagasse pellets. *Biomass and Bioenergy*, 154.
- [9] Saosee P., Sajjakulnukit B., and Gheewala S.H., 2022. Environmental externalities of wood pellets from fast-growing and para-rubber trees for sustainable energy production: A case in Thailand. *Energy Conversion and Management: X*, 14.
- [10] Phiri R., Rangappa S.M., and Siengchin S., 2024. Sugarcane bagasse for sustainable development of thermoplastic biocomposites. *Industrial Crops and Products*, 222(5).
- [11] Singh P., Dogra P., and Kalamdhad A.S., 2024. Sugarcane bagasse and cow dung pelletization in varied food-to -microorganisum ratios for biogas generation. *Industrial Crops and Products*, 210.
- [12] Toscano G., Feliciangli G., Rossini G., Fabrizi S., Pedretti E. F., and Duca D., 2019. Engineered solid biofuel from herbaceous biomass mixed with inorganic additive. *Fuel*, 256: 1-10.
- [13] Rajput S.P., Jadhav S.V., and Thorat B.N., 2020. Methods to improve properties of fuel pellets obtained from different biomass sources: Effect of biomass blends and binders. *Fuel Processing Technology*, 199: 1-12.
- [14] Intagun W. and A. Maden. 2020. Effect of mixing ratios on physical properties and energy consumption of Leucaena pellets by using fermented cassavarhizome. *Science*, *Engineering and Health Studies*, 14: 193-202.
- [15] Intagun W., Sonponpongpipat N., and Kanoksilapatham W., 2023. Fermented cassavarhizome residue as a biomass pellet binding additive influenced by multi-bacterial biofilm. *International Energy Journal* 23: 219-228.
- [16] Zongliang Z., QingBo Y., X., Kun W., SiHong L., Fan Y., Qin Q., and ZhenFei Q., 2018. Mechanical and reduction characteristics of cold-pressed copper slag pellets composited within biomass and lignite. *Renewable Energy*, 125: 206-224.
- [17] Liu Y., Yan T., An Y., Zhang W., and Dong Y., 2021. Influence of water leaching on alkali-induced slagging properties of biomass straw. *Journal of Fuel Chemistry and Technology*, 49:1839-1849.
- [18] Lachman J., Balas M., Lisy M., Lisa H., Milcak P., and Elbl P., 2021. An overview of slagging and fouling indicators and their applicability to biomass fuels. *Fuel Processing Technology*, 217: 1-10.
- [19] Jezerska L., Sassmanova V., Prokes R., and Gelnar D., 2023. The pelletization and torrefaction of coffee grounds, garden chaff and rapeseed straw. *Renewable Energy*, 210: 346-354.
- [20] Ali A.M., Waheed A., Shahbaz M., Mirani A.A., Shahzad K., Zahrani A.A., Nawaz A.M., Mahpudz A.B., 2023. Synergistic evaluation of co-torrefaction performance of rice husk and coffee bean ground

blends for biosolid production for industrial fuel sustainability. *Fuel*, 343.

[21] Solowiej P., Neugebauer M., and Esmer O., 2024. Coffee grounds as additive to wood pellets. *Energies*, 17(18)