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The study applies the equilibrium optimizer (EO) and the secretary bird 

optimization algorithm (SBOA) to minimize the total electricity generation fossil 

fuel costs of thermal power plants (ThPPs) in hybrid power systems with solar 

photovoltaic power plants (SoPPs) and pumped storage hydropower plants 

(PuHPs) for one operating day. Two systems are employed: System 1 has two 

ThPPs and one SoPP, and System 2 is expanded by integrating one more PuHP 

into System 1. The generation of the SoPP is calculated using solar radiation from 

a specific location in Vietnam; meanwhile, the generation of ThPPs and the 

pumping power and generation of the PuHP are optimally determined by EO and 

SBOA. The pumping power and generation of the PuHP are supposed to be 

continuous. System 2 is run for two cases: Case 1- no running pumps, and Case 2- 

running pumps. As a result, EO can reach smaller costs than SBOA for the two 

systems. System 1 costs the most, $9,155,384, whereas Case 2 of System 2 costs 

the least, $9,006,450. System 2 can reach a smaller cost than System 1 by 

$148,934, about 1.63%.  For System 2, the total cost of Case 2 is smaller than 

that of Case 1 by $81,025 per day, about 0.9%. The results indicate that the 

optimal operation of pumps in PuHPs can contribute to a high-cost reduction for 

ThPPs in hybrid power systems. 
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1 1. INTRODUCTION 

The energy storage system is one of the valuable 

solutions that brings many significant benefits to the 

operation and development of modern power systems 

[1]. It helps to improve the efficiency of renewable 

energy plants and reduce the ThPPs [2]. Firstly, it 

improved the grid's stability by balancing the power load 

and minimizing local line overloads or interruptions. In 

addition, this storage system also overcomes the 

disadvantages of renewable energy sources, such as the 

SoPPs and wind power, by storing excess electricity 

when the line is overloaded and supplying it back when 

the line is underloaded. As a result, the electricity grid 

system does not have to invest in a new transmission 

and generation infrastructure, which is time-consuming 

and costly [3]. Secondly, this system improves system 

operating efficiency through voltage regulation and 

power quality control,  leading to a flexible power 

supply that quickly responds to important loads or 
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emergencies. Finally, to develop sustainable energy use, 

this system reduces greenhouse gas emissions and 

promotes sustainable energy transition. However, 

operating these systems to bring the best efficiency and 

satisfy technical constraints is an important issue that 

needs to be solved. In this paper, PuHPs are applied as 

energy storage units to reduce the total fuel cost of 

ThPPs in power systems. 

Metaheuristic optimization algorithms were 

applied to solve the operation problems for hybrid 

power systems combining PuHPs, renewable energy, 

and ThPPs with various constraints [4]–[9]. The above 

studies apply PuHPs models with the relationship 

between electric power and water flow expressed 

through linear formulas in quadratic functions. 

Constraints related to the operation of PuHPs, such as 

generation and pumping capacity limits, discharge and 

pumping flow limits, water balance constraints in the 

reservoir over time, and constraints on the final reservoir 

volume equal to the initial reservoir volume, have been 

considered. Study [4] applies the Jellyfish Search 

Algorithm (JSA) to the optimal operation problem of a 

hybrid system combining PuHPs, wind power, ThPPs, 

and SoPPs. The objective is to optimize the operating 

cost.  EO [5], Slime Mould Algorithm (SMA) [5], and 

Improved Slime Mould Algorithm (ISMA) [5] are used 

for the hybrid system consisting of cascade hydro, 

thermal, PuHPs, wind, and SoPPs. Differential 

Evolution (DE) algorithm is used to find the optimal 

solution in the study [6]. The study considers two cases: 

a system consisting of only ThPPs and a system with 
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additional PuHPs to analyze the benefits. A quadratic 

function models the fuel cost function of ThPPs. The 

transmission line losses are calculated using the 

Newton-Raphson power flow method. The constraints of 

the problem are handled through the penalty method. 

The results obtained from DE are compared with other 

algorithms in the literature [7]. Self-organizing 

Migrating Algorithm (SOMA) [8] and improved self-

organizing migration algorithm (ISOMA) [9] were 

applied and proposed to find optimal storage and 

discharge of the PuHP and the optimal generation of 

ThPPs in power systems. Salp Swarm Algorithm (SSA) 

and Dragonfly algorithm (DA) were applied to find 

optimal solutions, but they could not find solutions of 

the same quality as SOMA and ISOMA.  Mixed Integer 

Linear Programming model was applied to operate a 

power system with a 976 MW PuHP to maximize the 

total profit [10]. A standalone combined system with 

wind turbines, SoPPs, biomass units, and PuHP was 

optimally operated [11]. Another standalone system with 

PuHPs and wind turbines supplied power to an extensive 

power system. The economic risk of the standalone 

system was analyzed to conclude whether it should be 

installed or not [12]. The study [13] assumes that a 

conventional hydropower plant is converted to PuHP to 

improve efficiency. A PuHP with variable pump speeds 

was integrated into a system with SoPPs and wind 

turbines [14]. A small-capacity PuHP was integrated 

into microgrids with battery energy storage systems 

(BESS), supplied by renewable energies, considering the 

uncertainty of renewable power sources [15]. Three 

targets, including economy, technique, and environment, 

were evaluated in one off-grid combined power system 

with solar array tracker, BESS, and PuHP [16]. The 

configuration of a combined system using PuHP, BESS, 

solar arrays, biomass units, and wind turbines was 

determined optimally by using Heap Optimization 

Algorithm (HOA) [17], the non-dominated sorting 

whale optimization algorithm (NSWOA), and non-

dominated sorting genetic algorithm-II (NSGA-II) [18]. 

The electric market was considered when running PuHP 

in a combined system with PuHP and renewable power 

sources [19]. By using a modified bat algorithm, PuHP 

and other renewable power plants were operated 

optimally, leading to a huge benefit from the generation 

process [20]. A power system in Raglan, Canada, was 

operated optimally to improve the sustainability of 

energy via the remote control of wind turbines and 

PuHP [21]. A hybrid renewable energy system was 

designed for a microgrid in Dakhla, Morocco, featuring 

wind turbines (WTs), BESS, SoPPs, and diesel-based 

generators [22]. The impact of wind speed, solar 

radiation, and diesel fuel costs on the grid's total cost 

and energy price was investigated. As a result, the best 

grid cost and energy price per kWh were $74,327 and 

$0.0917. Two hybrid systems for a microgrid in El 

Kharga Oasis, Egypt, were designed [23]. The first 

system included  PVSS, BESS, DGs, and WTs, costing 

$286,874 for the whole system and $0.2309 for each 

kWh. The second system, which excluded WTs, had a 

total cost of $322,674 and an energy price per kWh of 

$0.2597. The cost and energy price of three systems in 

the Farafra region of Egypt were examined [24]. Those 

of the first system with all components were $187,181 

and $0.213 per kWh. Those of the second system were 

$214,530 and $0.2452 per kWh, while those of the third 

system, which excluded SPs, were $603,026 and $1.81 

per kWh. 

In general, the studies above have shown good 

results in cost reduction and profit enhancement after 

running PuHPs in power systems with and without 

renewable power sources. The studies applied or 

developed a modified version of existing algorithms to 

get better results. They had significant contributions to 

power systems. However, they did not prove the real 

performance of PuHPs when considering the variable 

pump speed of PuHPs. The PuHPs have two operation 

modes, including electricity generation and water 

storage. When the inflows are significant over the 

scheduled time, a huge amount of energy can be 

produced by the PuHPs, even if we do not care if the 

water storage operation is optimal. In general, the 

efficiency of pumps was considered to be 0.75, so if the 

operation of pumps is not effective, the water storage 

can lead to a loss of energy. The conventional 

hydropower plants without water storage functions can 

produce high energy for power systems, reducing the 

high power for ThPPs. Clearly, the research gap 

regarding the neglect of the pumping effectiveness of 

the PuHPs was seen in the previous studies. So, their 

contributions to the power system are not highly 

accurate. The big problem is indicated and proven in the 

study. In the study, EO [25] and SBOA [26]  are applied 

for two systems, in which the second system comprises 

one SoPPs, two ThPPs, and one PuHP. The second 

system is simulated for two cases: Case 1: The PuHP 

does not run pumps, and Case 2: The PuHP can run 

pumps. In Case 1, the system is solved to find the 

optimal power of the PuHP and the optimal generation 

of the two ThPPs. In Case 2, the system is solved to find 

optimal pump power and generation of the PuHP and 

optimal generation of the two ThPPs. In the two cases, 

the inflows to the PuHP are the same, indicating the 

effectiveness of pump operations. The comparison of the 

two can solve the research gaps of the previous studies. 

In addition, EO and SBOA were applied in early 2025 

for engineering problems, and they were proven to be 

more effective than other popular and well-known 

metaheuristic algorithms [27], [28]. So, the two 

algorithms are selected as optimization tools for the 

study. The novelty of the study is summarized as 

follows: 

• Apply EO and SBOA to the problem of optimal 

scheduling of thermal-solar-pumped storage 

power plants. 

• The variable pump speed of PuHP is considered 

in the study.  

After running EO and SBOA for simulation cases, 

the results are compared and analyzed to show the 

following contributions: 

• The applied EO and SBOA are powerful 

algorithms for the problem. They can get a 

100% success rate for simulation cases. So they 
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will be able to solve more complex problems in 

electrical engineering. 

• The total load demand can be supplied, and the 

total costs of ThPPs can be reduced based on 

the optimal operation of pumps. 

2.  PROBLEM FORMULAR 

2.1 Objective Function 

This study investigates how PuHPs contribute to 

reducing the cost of ThPPs. A typical power system that 

includes various power plants,  such as 𝑁𝑇ℎ𝑃𝑃 , ThPPs, 

𝑁𝑃𝑢𝐻𝑃 , PuHPs, and 𝑁𝑆𝑜𝑃𝑃  SoPPs, is considered. The 

power from all power plants will be determined so that 

the objective function of the system is to reduce the fuel 

cost (FC) from ThPPs [4]. Its formulation is given by: 

𝐹𝐶 =  ∑ ∑ (𝑎𝑘 + 𝑏𝑘 × 𝑇ℎ𝑃𝑃𝑘,𝑡
𝐺𝑒

𝑁𝑇ℎ𝑃𝑃

𝑘=1

24

𝑡=1

+ 𝑐𝑘 × (𝑇ℎ𝑃𝑃𝑘,𝑡
𝐺𝑒)2) 

(1) 

where, 𝑎𝑘 , 𝑏𝑘 , and 𝑐𝑘 are cost parameters of the kth 

ThPP; and 𝑇ℎ𝑃𝑃𝑘,𝑡
𝐺𝑒 is the power output of the kth ThPP 

at the tth hour. 

2.2 Constraints 

2.2.1 Power balance constraint 

The constraint is a fundamental requirement for ensuring 

the stability of power systems. The total power 

generated by all power plants must match the total load 

demand, including any losses in the transmission lines as 

assigned in Equation (2). 

∑ (𝑇ℎ𝑃𝑃𝑘,𝑡
𝐺𝑒)

𝑁𝑇ℎ𝑃𝑃

𝑘=1

+ ∑ ( 𝑆𝑜𝑃𝑃𝑚,𝑡
𝐺𝑒 )

𝑁𝑆𝑜𝑃𝑃

𝑚=1

   

+ ∑ ((1 − 𝐾𝑁𝑂𝑃𝑙,𝑡 )𝑃𝑢𝐻𝑃𝑙,𝑡
𝐺𝑒)

𝑁𝑃𝑢𝐻𝑃

𝑙=1

 

− ∑ (𝐾𝑁𝑂𝑃𝑙,𝑡 . 𝑃𝑢𝐻𝑃𝑙,𝑡
𝑃𝑢)

𝑁𝑃𝑢𝐻𝑃

𝑙=1

− 𝐿𝑜𝑎𝑑𝑡 − 𝐿𝑜𝑠𝑠𝑡

= 0 

(2) 

where, 𝑃𝑢𝐻𝑃𝑙,𝑡
𝐺𝑒 , 𝑃𝑢𝐻𝑃𝑙,𝑡

𝑃𝑢 and 𝐾𝑁𝑂𝑃𝑙,𝑡  are obtained by 

[15]. 

𝑃𝑢𝐻𝑃𝑙,𝑡
𝐺𝑒 =  𝑔 × 𝐻𝑙,𝑡 × 𝜌 × 𝑄𝑙,𝑡

𝐺𝑒 × 𝜂𝐺𝑒 (3) 

𝑃𝑢𝐻𝑃𝑙,𝑡
𝑃𝑢 =  

𝑔 × 𝐻𝑙,𝑡 × 𝜌 × 𝑄𝑙,𝑡
𝑃𝑢

𝜂𝑃𝑢

 (4) 

𝐾𝑁𝑂𝑃𝑙,𝑡 

= {
1 ,    𝑓𝑜𝑟 𝑝𝑢𝑚𝑝 𝑠𝑡𝑎𝑡𝑢𝑠

0 ,      𝑓𝑜𝑟 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑢𝑠                           
 (5) 

 In constraint (2), the first three terms are from the 

generation sides; meanwhile, the last three terms are 

from the consumed side. Namely, ∑ (𝑇ℎ𝑃𝑃𝑘,𝑡
𝐺𝑒)

𝑁𝑇ℎ𝑃𝑃
𝑘=1  is 

the total generation of all 𝑁𝑇ℎ𝑃𝑃 ThPPs at the tth hour. 

 ∑ ((1 − 𝐾𝑁𝑂𝑃𝑙,𝑡 )𝑃𝑢𝐻𝑃𝑙,𝑡
𝐺𝑒)

𝑁𝑃𝑢𝐻𝑃
𝑙=1  is the total 

generation of all 𝑁𝑃𝑢𝐻𝑃  PuHPs at the tth hour in case 

that the operating status is generation (i.e., 𝐾𝑁𝑂𝑃𝑙,𝑡 =

0); ∑ (𝑆𝑜𝑃𝑃𝑚,𝑡
𝐺𝑒 )

𝑁𝑆𝑜𝑃𝑃
𝑚=1  is the total generation of all 𝑁𝑆𝑜𝑃𝑃  

SoPPs at the tth hour. ∑ (𝐾𝑁𝑂𝑃𝑙,𝑡 . 𝑃𝑢𝐻𝑃𝑙,𝑡
𝑃𝑢)

𝑁𝑃𝑢𝐻𝑃
𝑙=1  is the 

total consumed power of the pumps of all PuHPs in case 

that the operating status is pump (i.e., 𝐾𝑁𝑂𝑃𝑙,𝑡 = 1). 

𝐿𝑜𝑎𝑑𝑡  and 𝐿𝑜𝑠𝑠𝑡  are the total demand of all loads and 

losses on all transmission lines at the tth hour. However, 

the study neglects the losses on all transmission lines. In 

addition, symbols in constraint (2) are explained as 

follows: 𝑁𝑇ℎ𝑃𝑃 , 𝑁𝑃𝑢𝐻𝑃  and 𝑁𝑆𝑜𝑃𝑃  are the numbers of 

ThPPs, PuHPs and SoPPs. 𝐾𝑁𝑂𝑃𝑙,𝑡 is the operation 

mode of the lth 𝑃𝑢𝐻𝑃  at the tth hour; 𝑃𝑢𝐻𝑃𝑙,𝑡
𝐺𝑒  is the 

power output of the lth 𝑃𝑢𝐻𝑃 in the generation process 

at tth hour. 𝑃𝑢𝐻𝑃𝑙,𝑡
𝑃𝑢  is the power demand of the lth 

𝑃𝑢𝐻𝑃 in the pumping process at the tth hour; 𝑆𝑜𝑃𝑃𝑚,𝑡
𝐺𝑒  is 

the power output of the mth SoPP at the tth hour. 

Equation (3) and Equation (4) are used to 

determine the generation and the pump power of the lth 

PuHP at the tth hour if the operating status is generation 

and pump, respectively, in which Eq. (5) is employed to 

determine the operating status. In the study, the 

operating status 𝐾𝑁𝑂𝑃𝑙,𝑡  is a very important parameter 

that results in the minimum cost of all ThPPs in the 

power system. If the parameter is selected to be 0 (i.e., 

generation mode), the discharge parameter 𝑄𝑙,𝑡
𝐺𝑒 will be 

produced and the value of 𝑃𝑢𝐻𝑃𝑙,𝑡
𝐺𝑒  will be determined 

by using Equation (3). For another case, if 𝐾𝑁𝑂𝑃𝑙,𝑡 is 

selected to be 1 (i.e., pump mode), the pumped flow 𝑄𝑙,𝑡
𝑃𝑢  

will be produced and the value of 𝑃𝑢𝐻𝑃𝑙,𝑡
𝑃𝑢  will be 

calculated by using Equation (4). So, the PuHPs have 

three key parameters, including 𝐾𝑁𝑂𝑃𝑙,𝑡 , 𝑄𝑙,𝑡
𝐺𝑒 and 𝑄𝑙,𝑡

𝑃𝑢 , 

which are optimally determined by the applied 

metaheuristic algorithms EO and SBOA. In the two 

equations, 𝐻𝑙,𝑡  is the net head in (m). 𝑔 is the gravity 

acceleration in (m/s2). 𝜌 is the water density in (kg/m3). 

𝜂𝐺𝑒  and 𝜂𝑃𝑢 are the generation and pump efficiency. 𝑄𝑙,𝑡
𝐺𝑒  

and 𝑄𝑙,𝑡
𝑃𝑢 are the discharge for generating and storing for 

pumping. 

2.2.2 Generation power constraint 

Power plants must operate within a defined range of 

generation, from lower to upper limits, to meet 

economic and technical demands effectively. 

𝑇ℎ𝑃𝑃𝑘
𝐺𝑒,𝑚𝑖𝑛 ≤ 𝑇ℎ𝑃𝑃𝑘

𝐺𝑒 ≤ 𝑇ℎ𝑃𝑃𝑘
𝐺𝑒,𝑚𝑎𝑥       (6) 

𝑆𝑜𝑃𝑃𝑚
𝐺𝑒,𝑚𝑖𝑛 ≤ 𝑆𝑜𝑃𝑃𝑚

𝐺𝑒 ≤ 𝑆𝑜𝑃𝑃𝑚
𝐺𝑒,𝑚𝑎𝑥

 (7) 

𝑃𝑢𝐻𝑃𝑙
𝐺𝑒𝑛,𝑚𝑖𝑛 ≤ 𝑃𝑢𝐻𝑃𝑙

𝐺𝑒𝑛 ≤ 𝑃𝑢𝐻𝑃𝑙
𝐺𝑒𝑛,𝑚𝑎𝑥       (8) 

where, 𝑇ℎ𝑃𝑃𝑘
𝐺𝑒,𝑚𝑖𝑛

, 𝑆𝑜𝑃𝑃𝑚
𝐺𝑒,𝑚𝑖𝑛

, and 𝑃𝑢𝐻𝑃𝑙
𝐺𝑒𝑛,𝑚𝑖𝑛

 are 

lower power output of power plants; and 𝑇ℎ𝑃𝑃𝑘
𝐺𝑒,𝑚𝑎𝑥

,  

𝑆𝑜𝑃𝑃𝑚
𝐺𝑒,𝑚𝑎𝑥

, and 𝑃𝑢𝐻𝑃𝑙
𝐺𝑒𝑛,𝑚𝑎𝑥

 are upper power output 

of power plants. 
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2.2.3 Hydraulic constraints 

Reservoir and discharge limitations: Upper reservoirs of 

PuHPs, often referred to as hydropower plant reservoirs, 

play a crucial role in ensuring safe and efficient 

operation. These reservoirs have defined limits for both 

water storage and discharge. The storage limits are vital 

for maintaining the safety and integrity of the reservoir, 

while the discharge limits protect the turbines and 

generators from potential damage. The water volume in 

the reservoir and the water discharged through the 

turbines during each operational hour must comply with 

established guidelines consistently. Their limitations are 

given by: 

𝑉𝑙
𝑚𝑖𝑛≤ V𝑙,t ≤ 𝑉𝑙

𝑚𝑎𝑥    (9) 

𝑄𝑙
𝑚𝑖𝑛 ≤  Q

𝑙,t 
≤ 𝑄𝑙

𝑚𝑎𝑥       (10) 

where, 𝑉𝑙
𝑚𝑖𝑛 , 𝑉𝑙

𝑚𝑎𝑥 , and  Vl,t  are the lower, upper and 

operating reservoir volumes; 𝑄𝑙
𝑚𝑖𝑛 , 𝑄𝑙

𝑚𝑎𝑥  , and  Q
l,t 

are 

the lower, upper and operating water discharge. 

Volume constraint at the end: Before creating a daily 

generation plan for a hydropower plant, it is essential to 

know the water volume available in the upper reservoir. 

This volume is a predefined input parameter. Along with 

the inflows into the reservoir, this information is used to 

estimate the energy that will be generated over the day. 

At the end of the last hour of the day, the reservoir 

volume is recalculated. This final volume, which is also 

a predefined parameter, must meet specific criteria as 

per the following equation 

𝑉𝑙,0 = 𝑉𝑙,24 (11) 

3. THE IMPLEMENTATION OF APPLIED 

ALGORITHMS 

3.1 Equilibrium Optimizer 

The EO is the meta-heuristic algorithm proposed based 

on the balance principle of mass in the control volume. 

In fact, EO is actually a physics-based meta-heuristic 

algorithm; however, the whole optimization process of 

EO while dealing with a given optimization problem is 

identical to other meta-heuristic algorithms except for its 

update procedure to the new solutions. 

At first, EO also executes the generation of a set of 

solutions at the beginning of its optimization process 

using the following models 

𝑆𝑖 = 𝑆𝑖 + 𝛿 × (𝑆𝑖
𝑚𝑎𝑥 − 𝑆𝑖

𝑚𝑖𝑛); 𝑖 = 1,2 … , 𝑃𝑠 (12) 

𝐹𝑖 = 𝑂𝐹(𝑆𝑖) (13) 

where, 𝑆𝑖 is the current solution ith; 𝛿 is a random value 

within zero and one; 𝑆𝑖
𝑚𝑎𝑥  and 𝑆𝑖

𝑚𝑖𝑛  are the maximum 

and minimum boundaries of the solution ith; Ps is the 

population size; 𝐹𝑖 is the fitness value of the solution 𝑆𝑖; 

OF is the main objective function featured by the given 

optimization problem. 

 After determining the fitness values for all 

solutions using Equations (12) and (13), the elite 

solutions are identified. This selection is based on the 

four best fitness values from the top four solutions. 

Additionally, the average best fitness is determined by 

calculating the mean of these top four solutions, as 

presented in Equation (14). 

𝑆𝑒𝑙𝑡  ∈  [𝑆𝑡𝑜𝑝1; 𝑆𝑡𝑜𝑝2; 𝑆𝑡𝑜𝑝3; 𝑆𝑡𝑜𝑝4; 𝑆𝑎𝑣𝑔] (14) 

where 𝑆𝑒𝑙𝑡 is the elite solution that is randomly selected 

from the elite group; 𝑆𝑡𝑜𝑝1, 𝑆𝑡𝑜𝑝2, 𝑆𝑡𝑜𝑝3, 𝑆𝑡𝑜𝑝4, and 𝑆𝑎𝑣𝑔 

are the top four-best solutions and the average best 

solution is determined by the top four-best solutions. 

When the 𝑆𝑒𝑙𝑡 is identified, the main procedure of 

the update process is executed using the following 

mathematical models 

𝑆𝑖
𝑛𝑒𝑤 =  𝑆𝑒𝑙𝑡 + (𝑆𝑖 − 𝑆𝑒𝑙𝑡) × 𝛾

+
𝐺𝑟𝑡

𝑟𝑛𝑑 × 𝐶𝑉
× (1 − 𝛾) (15) 

𝐺𝑟𝑡 = 𝐺𝑟𝑡0 × 𝛾 (16) 

𝐺𝑟𝑡0 = 𝐴𝐹 × (𝑆𝑒𝑙𝑡 − 𝑟𝑎𝑛𝑑 × 𝑆𝑘  ) (17) 

𝐴𝐹 = {
0.5 × 𝑟𝑛𝑑1        𝑟𝑛𝑑2 ≥ 𝑅𝐹

0                              𝑟𝑛𝑑2 < 𝑅𝐹
 (18) 

𝛾 = 𝛼1 × 𝑠𝑖𝑔𝑛(𝑟𝑛𝑑 − 0.5) × (𝑒−𝑟𝑛𝑑×𝜀 − 1) (19) 

𝜀 =  (1 −
𝐼𝑇𝑃𝑟𝑒

𝐼𝑇𝑀𝑎𝑥
)

(𝛼2×
𝐼𝑇𝑃𝑟𝑒

𝐼𝑇𝑀𝑎𝑥)

 (20) 

where, 𝑆𝑖
𝑛𝑒𝑤 is the ith new solution, 𝛾 is the exponential 

element; 𝐺𝑟𝑡  is generating rate; the 𝐺𝑟𝑡0  the standard 

generating rate; 𝐴𝐹  is the amplifying coefficient; 𝑅𝐹 

reference factor; 𝜀  is the dependent factor;  𝑟𝑛𝑑  is the 

random number within zero and one, CV is the constant 

volume; 𝐼𝑇𝑃𝑟𝑒  and 𝐼𝑇𝑀𝑎𝑥  are the present and maximum 

index of iteration; 𝛼1   and 𝛼2  are t the two constant 

factors that manipulate the exploration and exploitation 

capability. 

Figure 1 presents the application of EO for a general 

optimization problem. 
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Fig. 1. The application of EO for a general optimization problem. 

 

3.2 Secretary Bird Optimization Algorithm 

The SBOA is a metaheuristic algorithm inspired by 

mimicking the effective hunting behaviors of the 

secretary bird. By applying these strategies, SBOA 

provides an impressive search performance compared to 

previous methods in solving optimization problems, 

including theoretical and practical ones. Unlike EO, 

SBOA is classified as a nature-inspired meta-heuristic 

algorithm. However, SBOA shares the same structure of 

the optimization process, similar to EO and others, such 

as the initialization, the first evaluation of randomly 

produced solutions, and others; however, the main 

feature that differentiates SBOA from EO and many 

others is its update procedure, which will be described 

using particular mathematical expressions as follows: 

3.2.1 Exploration phase 

In this phase, the update procedure is broken down into 

three stages corresponding to the current index of 

iterations as described below: 

• Stage 1: 𝐼𝑇𝑃𝑟𝑒  ≤
1

3
𝐼𝑇𝑀𝑎𝑥  

𝑆𝑖
𝑛𝑒𝑤,𝑠1 = 𝑆𝑖 + 𝜎1 × (𝑆𝑟𝑠1 − 𝑆𝑟𝑠2); 

 𝑖 = 1,2 … , 𝑃𝑠 
(21) 

where 𝑆𝑖
𝑛𝑒𝑤,𝑠1 is the new solution ith updated in phase 1, 

𝜎1  is a random within zero and one, 𝑆𝑟𝑠1  and 𝑆𝑟𝑠2  are 

random selected solutions among the current state of 

population.  

• Stage 2: 
1

3
𝐼𝑇𝑀𝑎𝑥 < 𝐼𝑇𝑃𝑟𝑒 ≤

2

3
𝐼𝑇𝑀𝑎𝑥  

𝑆𝑖
𝑛𝑒𝑤,𝑠2 = 𝑆𝑏𝑒𝑠𝑡 + 𝑒𝑥𝑝 ((

𝐼𝑇𝑃𝑟𝑒

𝐼𝑇𝑀𝑎𝑥
)

4

)

× (𝑆𝑏𝑒𝑠𝑡 − 𝑆𝑖)  × (𝜎2 − 0.5); 

𝑖 = 1,2 … , 𝑃𝑠 

(22) 

where, 𝑆𝑖
𝑛𝑒𝑤,𝑠3

 is the new solution i updated in Stage 3; 

𝐿𝑉 the value resulted by Levy flight distribution. 

3.2.2 Exploitation stage 

In this exploitation phase, the update process for all the 

solutions is conducted using the following expression: 

𝑆𝑖
𝑛𝑒𝑤 = {𝑆𝑏𝑒𝑠𝑡  + (2 × 𝜎2 − 1) (1 −

𝐼𝑇𝑃𝑟𝑒

𝐼𝑇𝑀𝑎𝑥)

2

𝑋𝑖 , if rand < 0.5

𝑆𝑖  + 𝜎3 × (𝑆𝑟𝑠3 − 𝜔 × 𝑋𝑖),                            otherwise

 (24) 

where, 𝜎3 a random value between zero and one; 𝑆𝑟𝑠3 is 

the random selected solution from the current state of 

population. 

Figure 2 presents the application of SBOA for a 

general optimization problem. 
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Fig. 2. The application of SBOA for a general optimization problem. 

 

3.3 Fitness Function Calculation 

3.3.1 Decision variables 

Decision variables comprise the operating status 

𝐾𝑁𝑂𝑃𝑙,𝑡 , discharge 𝑄𝑙,𝑡
𝐺𝑒  and pumped flow 𝑄𝑙,𝑡

𝑃𝑢  of the 

PuHPs, and the generation of all ThPPs 𝑇ℎ𝑃𝑃𝑘,𝑡
𝐺𝑒  

excluding the first ThPP (i.e., k≠1). So, the set of the 

variables is included in the solution of EO and SBOA 

for initial generation before the iterative algorithm and 

for new update in the iterative algorithm. Namely, the 

decision variable set (𝐷𝑉𝑆) is as follows: 

𝐷𝑉𝑆 = [𝐾𝑁𝑂𝑃𝑙,𝑡 , 𝑄𝑙,𝑡
𝐺𝑒 , 𝑄𝑙,𝑡

𝑃𝑢 , 𝑇ℎ𝑃𝑃𝑘,𝑡
𝐺𝑒] (25) 

The decision variable set is updated in each 

iteration by using Equation (15) for EO and Equations 

(21) to (24) for SBOA. 

3.3.2 Dependent variables 

In contrast to decision variables, dependent variables are 

obtained by using available equations shown in Section 

2. After having three decision variables 𝐾𝑁𝑂𝑃𝑙,𝑡 , 𝑄𝑙,𝑡
𝐺𝑒 , 

𝑄𝑙,𝑡
𝑃𝑢 , the pumping power or generation of the PuHPs is 

obtained by using Equations (3) to (4). 𝑆𝑜𝑃𝑃𝑚,𝑡
𝐺𝑒 is looked 

up by using the predetermined location; meanwhile, the 

load demand 𝐿𝑜𝑎𝑑𝑡is the input data. Thus, constraint (2) 

is converted into the constraint of the first ThPP in the 

system (i.e., 𝑇ℎ𝑃𝑃1,𝑡
𝐺𝑒). 

3.3.3 Fitness function 

The fitness function of the problem is determined as 

follows: 

𝐹𝑘 = 𝐹𝐶 + 𝐹𝑝𝑒 × (∆𝑃𝑢𝐻𝑃𝑙,𝑡
𝐺𝑒 + ∆𝑃𝑢𝐻𝑃𝑙,𝑡

𝑃𝑢

+ ∆𝑇ℎ𝑃𝑃1,𝑡
𝐺𝑒 +  ∆V𝑙,t ) (26) 

where, 𝐹𝑝𝑒 is the penalty coefficient of the violated 

dependent variables. ∆𝑃𝑢𝐻𝑃𝑙,𝑡
𝐺𝑒  and ∆𝑃𝑢𝐻𝑃𝑙,𝑡

𝑃𝑢  are the 

violated interval of the generation and pumping power 

of the PuHP. ∆𝑇ℎ𝑃𝑃1,𝑡
𝐺𝑒  is the violated interval of the 

first ThPP.  ∆V𝑙,t is the violated interval of the volume of 

the PuHP. 

4. NUMERICAL RESULTS 

The study implements two metaheuristic algorithms, 

including EO  and SBOA, to solve the optimal 

generation problem for hybrid power systems. EO and 
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SBOA are programmed on the Matlab software with the 

2019A version and run on an 8−GB RAM and 2.4 GHz 

processor computer. 

4.1 The Simulation Results for System 1 

System 1 comprises two ThPPs and one SoPPs. Data 

from the two ThPPs are taken from [4]  and shown in 

Table 1. The solar radiations are taken from Khanh Hoa 

province, Vietnam, at the geography coordinates 

11.696676°, 109.019531° and the rated power of SoPP 

is 450MW [29]. The system is plotted in Figure 3. The 

power demand of loads and the hourly generation of 

SoPP are plotted in Figure 4. To implement the two 

algorithms, the population and  iteration number are set 

to 50 and 250 for EO and 25 and 250 for SBOA.

 
Table 1. Fuel cost function and generation limits of two ThPPs. 

𝑘 𝑎𝑘 𝑏𝑘 𝑐𝑘 𝑇ℎ𝑃𝑃𝑘
𝐺𝑒,𝑀𝑖𝑛

 (MW) 𝑇ℎ𝑃𝑃𝑘
𝐺𝑒,𝑀𝑎𝑥

 (MW) 

1 3,877.5 3.9795 0.08 10 2,500 

2 3,900 3.9 0.081 10 2,500 

 

 

Fig. 3. The typical configuration of System 1. 

 

 

Fig. 4. Load demand and solar photovoltaic power plant’s generation. 

 

A summary of the total fuel cost of the two ThPPs 

is plotted in Figure 5. The best total cost is $9,155,384.3, 

obtained by EO; meanwhile, SBOA’s total cost is 

$9,155,387.3. The fluctuation of EO is smaller than that 

of SBOA. The box height of EO is lower than that of 

SBOA. In addition, the middle and the peak of EO are 

$9,155,388.5 and $9,155,411.5, whereas they are 

$9,155,407.2 and $9,155,480.4 for SBOA. The boxplot 

reveals that EO has better or more stable performance 

than SBOA. Figures 6 and 7 show the search process of 

the best run and the mean of all fifty runs. In the best 

runs, EO converged to the global optimal solution at the 
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200th iteration, and the improvement of the solution from 

the 201th to the 250th iterations is not clearly seen. On 

the contrary, SBOA cannot converge to the best solution 

at the last iteration. In the mean curve of all fifty runs, 

the fitness functions of EO seem not to change from the 

200th to the last iterations, but those of SBOA are 

decreased significantly from the 200th to the last 

iterations. The convergence characteristics confirm that 

EO is much faster and more stable than SBOA for fifty 

runs. 

 

  

Fig. 5. Summary of results obtained by EO and SBOA. 

 

 

Fig. 6. The search process of the best run. 

 

 

Fig. 7. The mean search process of all fifty runs. 
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To investigate the search performance for the 

system, the population and iteration numbers increased 

from 50 and 250 to 100 and 400 for EO, and from 25 

and 250 to 50 and 400 for SBOA. The summary of 

results is shown in Figure 8. The results show that the 

performance of SBOA and EO has improved. EO can 

find many of the best solutions, and SBOA can find the 

same solution. The difference between the fifty solutions 

obtained by EO is tiny, and the best total cost for this 

system is $9,155,384.02. Figure 9 and 10 indicate that 

EO is faster and more stable than SBOA, and the 

difference is clear after the 300th iteration. 

 

  

Fig. 8. Summary of results obtained by EO and SBOA after increasing control parameters. 

 

 

Fig. 9. The search process of the best run after increasing control parameters. 

 

 

Fig. 10. The mean search process of all fifty runs after increasing control parameters. 
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4.2 The Simulation Results for System 2 

System 2 has two ThPPs, one SoPP, and one PuHP, and 

its configuration is plotted in Figure 11. To show the 

value of pumps in water storage function, the system is 

simulated under two cases as follows: 

Case 1: The PuHP does not run pumps for the whole 

schedule 

Case 2: The PuHPs runs pumps for water storage. 

To have a high possibility of finding the most effective 

solution for the system, the population and iteration 

number are set to 100 and 1,000 for EO and 50 and 

1,000 for SBOA. Figure 12 and Figure 13 summarize 

the total cost of fifty runs for Case 1 and Case 2. EO can 

find better solutions than SBOA for the two cases. The 

best cost of EO is $9,087,475.0 for Case 1 

and  $9,006,450.4 for Case 2; meanwhile, those are 

$9,087,482.3 and $9,010,754.6 for SBOA. For Case 1, 

EO has very tiny fluctuations since the best, mean, and 

maximum values are approximately the same, around 

$9,087,475.0 SBOA fluctuates very high since the 

difference between the smallest and highest values is 

very high. EO in Case 2 is not as good as in Case 1 since 

the fluctuations are much higher. SBOA still has much 

higher fluctuations than EO because its minimum and 

maximum values have a very high deviation. So, it can 

be concluded that EO is more suited to the problem than 

SBOA. 

 

 

Fig. 11. The typical configuration of System 2 for case 2. 

 

 

 

  

Fig. 12. Summary of results for Case 1 of System 2. 
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Fig. 13. Summary of results for Case 2 of System 2. 

 

4.3 Discussion on the Study Cases 

The total cost of one day is compared in Figure 14 for 

the two systems. System 1, without the operation of 

PuHP, paid the highest cost of $9,155,384 whereas 

System 2, with the operations of pumps, paid the 

smallest total cost of $9,006,450. System 2, without the 

operation of pumps, paid a smaller total cost than 

System 1 by $67,909.7, about 0.79%, but it reached a 

higher total cost than System 2 with the operation of 

pumps. Using the pumps in PuHP makes the total cost 

smaller than System 1 by $148,934, and System 2 

without the pump operation costs $81,025 per day. The 

total cost reduction is about 1.63% and 0.9% of the total 

cost from System 1 and System 2 without running 

pumps.  

 

Fig. 14. Comparison of total costs among study cases. 

 

To clarify why Case 1 of System 2 can pay less 

than System 1, and Case 2 of System 2 can pay less than 

Case 1 of System 2, Figures 15 and 16 are plotted. The 

hourly cost of the two ThPPs and the reduced cost are 

presented in the figures. The reduced cost is obtained by 

using the following calculation: System 1 minus Case 1 

of System 2, and Case 1 of System 2 minus Case 2 of 

System 2. Figure 15 indicates that System 1 and Case 1 

of System 2 have the same hourly cost for hours 

excluding three hours 14−16, so the reduced cost of the 

hours is zero, but the cost of hours 14−16 is high. These 

reduced costs are $3,167, $22,055 and $42,688, 

respectively, and the sum of the reduced costs is about 

$67,910. In Figure 16, the reduced costs are negative for 

five hours (1−4 and 6), zero for fifteen hours (5−12, 

16−17, and 19−24), and positive for four hours (13−15 

and 18). The negative reduced costs are -$5,317.7, -

$9,766.7, -$13,135.5, -$13,028.7, and -$547.6, and their 

sum is -41796.2. The positive reduced costs are 

$41,301.8, $38,020.9, $18,056.3, $25441.8, and their 

sum is 122,820.9. The sum of negative and positive 

reduced costs is equal to ($122,820.9 - $41,796.2) = 

$81,024.7. The value 81,024.7 is also the saving cost of 

Case 2 compared to Case 1 of System 2. 
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Fig. 15. The hourly cost comparison of ThPPs in System 1 and Case 1 of System 2. 

 

 

 

Fig. 16. The hourly cost comparison of ThPPs in Cases 1 and 2 of System 2. 

 

 

Figure 17 compares the optimal generation in 

System 1 and System 2 without running the pumps of 

PuHP. The load demand is supplied enough by the total 

generation of two ThPPs and one SoPP in Figure 17a 

and by the total generation of two ThPPs, one SoPP, and 

one PuHP in Figure 17b. So, the difference is that 

System 2 has more generations from the PuHP. All the 

power plants satisfy the generation limitations. There is 

a tiny difference between the two subfigures in the 

generation of PuHP at hours 14−16. The generation of 

PuHP is very small at hour 14 and increases at hour 15 

and hour 16. The generation of the PuHP is 8.27, 

57.389, and 110 MW at these hours. So, the total cost of 

System 2 without running the pumps of PuHP is much 

smaller than that of System 1. 
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Fig. 17. Comparison of optimal generations: a) System 1 and b) Case 1 of System 2. 

 

 

  

Fig. 18. Comparison of optimal generation in System 2: a) Case 1 of System 2 b) Case 2 of System 2. 

 

A comparison of optimal generation in System 2 

without and with running pumps of PuHP is shown in 

Figure 18. The two figures have two differences, which 

are comprised of the number of hours of generating and 

pumping. Firstly, Figure 18a shows three hours 14−16 

with generation, while Figure 18b shows five hours 

13−16 and 18 with generation. Secondly, Figure 17b has 

five hours of 1−5 running pumps, while Figure 17a 

shows none of the hours running pumps. In detail, the 

generation is respectively 8.27, 57.389, and 110 MW in 

Figure 18a, and 109.726, 108.921, 104.905, 108.677, 

and 81.205 MW in Figure 18b. The total generated 

energy is 175.667 MWh in Figure 17a and 513.433 

MWh in Figure 17b. The pumping power is 109.180, 

108.986, 107.451, and 106.494 MW, as shown in Figure 

18b. The total consumed energy by pumps is 432.111 

MWh in Figure 17b. So, if we compare the effectiveness 

of energy, Case 2 only produces (513.433 - 432.111) = 
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81.322 MWh, which is smaller than 175.667 MWh in 

Case 1 by 94.345 MWh. 

Figure 19 reports the hydraulic parameters of the 

PuHP for one operating day. The two subfigures have 

the same values of inflows and different values of other 

parameters, such as discharges, volumes, and storage. 

Figure 19a does not have storage because the system did 

not run pumps; meanwhile, we can see the parameter in 

Figure 19b. The volume starts and ends at the same 

value of 1594 × 106  m3 in the two subfigures. This 

means that the two study cases satisfy the initial and 

final volume constraints. Case 1 has three hours with 

discharge; meanwhile, Case 2 has five hours with 

discharge. The difference is because Case 2 runs pumps 

at hours 1−4. The volume in Case 2 is also higher than 

in Case 1. The total inflow of 24 hours is 316 m3/s in 

two cases. The total discharge is 316 m3/s in Case 1, but 

it is 923.523 m3/s in Case 2. The total storage is 607.523 

in Case 2. It is correct that the total discharge in Case 2 

is the sum of the total inflow and the total storage, which 

is (316 + 607.523) = 923.523 m3/s. Thanks to the 

pumping function, Case 2 has a greater amount of water 

than Case 1 to produce electricity. The total generated 

energy in Case 1 is 175.667 MWh, while that is 513.433 

MWh in Case 2. However, Case 2 used 432.111 MWh 

to run pumps. So, if we compare the effectiveness of 

energy, Case 2 only produces (513.433 - 432.111) = 

81.322 MWh, which is smaller than 175.667 MWh in 

Case 1 by 94.345 MWh. 

 

  

Fig. 19. Hydraulic parameters of Case 2 of System 2. 

 

5.  CONCLUSIONS 

In this study, the EO and SBOA were successfully 

employed to optimize power generation allocation 

within hybrid power systems that incorporate renewable 

power plants. The primary objective is to minimize the 

total fossil fuel costs associated with electricity 

generation from ThPPs. Both EO and SBOA were 

applied to optimize the operational parameters of ThPPs 

and PuHPs simultaneously over 24 periods. The study 

has considered the variable pump speed for the PuHPs 

for flexible water storage. This optimization was 

conducted for two different power system configurations 

and different cases as follows: 

1)  System 1 was comprised of two ThPPs and 

one SoPP 

2)  System 2 was the integration of one more 

PuHP into System 1. Two simulation cases 

were performed for the system: Case 1-the 

PuHP worked as a conventional plant without 

running its pumps for water storage, and Case 

2-the PuHP could run pumps for water storage. 

After running EO and SBOA for the study cases 

with different settings of control parameters, the results 

are as follows: 

1) EO and SBOA reached the best cost of 

$9,155,384.263 and $9,155,387.624 for System 

1, $9,087,475.0 and $9,087,482.3 for Case 1 of 

System 2, and $9,006,450.4 and $9,010,754.6 

for Case 2 of System 2. So, EO found a lower 

cost than SBOA by $3.361, $7.3, and $4,304.2 
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for System 1, Cases 1 and 2 of System 2, 

respectively. Clearly, EO and SBOA had 

approximately the same good optimization 

operation solutions for simple systems without 

PuHP or with PuHP, but neglecting the 

pumping function. For another more 

complicated system with PuHP and 

consideration of pumping functions, EO 

outperformed SBOA clearly. 

2) System 1 paid $9,155,384, whereas Cases 1 and 

2 of System 2, respectively, paid $9,087,475.0 

and $9,006,450 for the total fuel cost of ThPPs. 

So, Case 2 of System 2 could pay less money 

than System 1 and Case 1 of System 2 by 

$148,934 and $81,025, corresponding to 1.63% 

and 0.9%. The results indicated that the 

presence of the PuHP in hybrid power systems 

is very beneficial in reducing the cost of fossil 

fuels in ThPPs. 

Besides the results and achievements mentioned above, 

the study still has several shortcomings that need to be 

improved for better quality as follows: 1) all the 

parameters of the mentioned power systems are not the 

actual parameters of the real system; 2) the 

consideration of only 24 periods for an operational day 

is conservative compared to the real operational 

situation; 3) the effect of electricity price in both selling 

and buying is not evaluated, etc. To remove all these 

limitations, future work should be conducted in the real 

power system, considering the large operational 

schedule, and lastly, the effect of the electricity market 

must be considered and analyzed to clearly demonstrate 

the benefit of operating PuHPs in the long term 
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