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Abstract – This paper presents an opposition-based self-adaptive differential evolution algorithm for emission-
constrained dynamic economic dispatch (ECDED) problem with non-smooth fuel cost and emission level functions. 
ECDED is an optimization problem with an objective to determine optimal combination of power outputs for all 
committed generating units over a certain period of time in order to minimize the total fuel cost and emission while 
satisfying dynamic operational constraints and load demand in each interval. A multi-objective function is 
formulated by assigning the relative weight to each of the objective and then optimized by opposition-based self-
adaptive differential evolution algorithm. The convergence rate of differential evolution is improved by employing 
opposition-based learning scheme and a self-adaptive procedure for control parameter settings. The validity and 
effectiveness of the proposed approach is demonstrated by a test system with five thermal generating units. The 
simulation results show that the proposed approach provides a higher quality solution with better performance. 
  
Keywords – Differential evolution, emission-constrained dynamic economic dispatch, multi-objective optimization, 
ramp-rate limits, valve-point effects. 
 
 1. INTRODUCTION 

Thermal power plants while generating power, 
simultaneously release toxic gases such as SO2 and NO2 
from boiler by burning the coal as fuel. In addition, 
particulate matter pollutes the whole atmosphere when it 
exceeds the limit. Due to the increased awareness for the 
environmental protection and the introduction of the 
Clean Air Act Amendments, utilities have been forced 
with modifications in the design and operation of the 
thermal power plants for controlling emissions such as 
SO2, CO2 and NOx [1]. Hence, it has become necessary 
to supply power with minimum emission as well as with 
minimum total fuel cost. 

Various strategies like installing post combustion 
cleaning system, switching to low sulphur content coal 
and emission dispatching have been proposed for 
minimizing emission. Emission dispatching is an 
attractive short-term alternative in which both emission 
and fuel cost are minimized. Proper allocation of 
generation reduces the fuel leading to emission control. 
It is easy to implement and requires only a minor 
modification of the basic economic dispatch to include 
emission. The cost minimum condition corresponds to 
minimum cost with considerable amount of emission. 
Similarly, the emission minimum condition produces 
minimum emission with higher deviation from the 
minimal cost. A co-ordination between cost and 
emission becomes necessary and the system as a whole 
is considered for cost minimum and controlled emission. 

Including the emissions either in the objective 
function or treating emissions as additional constraints 
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has been considered in a number of publications. El-
Keib et al. [2] have presented a general formulation of 
the environmental constrained economic dispatch 
problem. This solution algorithm is based on the 
Lagrange relaxation method, by adding separate small 
module to the existing economic dispatch. El-Keib et al. 
[3] presented the solution to the emission-constrained 
economic dispatch problem, which is linear 
programming based and uses gradient projection method 
to guarantee feasibility of the solution. Recently neural 
network [4], [5], genetic algorithms [6], [7], fuzzy logic 
[8], evolutionary programming [9] and multi-objective 
evolutionary algorithms [10] have been applied to solve 
the combined economic emission dispatch problem. 
Simulated annealing technique based on an interactive 
fuzzy satisfying method for economic emission load 
dispatch problem is discussed in [11]. 

In the traditional combined economic and 
emission dispatch problem, it is assumed that the 
amount of power to be supplied by a given set of units is 
constant for a given interval of time, and attempts to 
minimize the emission and cost of supplying this energy 
are subject to constraints on static behavior of the 
generating units. Inclusions of ramp-rate constraints 
distinguish the ECDED problem from traditional, static 
emission controlled economic dispatch problem. 
ECDED is a heavily constrained optimization problem 
due to non-convex fuel cost and emission functions, and 
ramp-rate constraints of the generators. ECDED is a 
method to schedule the committed generating outputs 
with the predicted load demand over a certain period to 
operate a power system most economically with reduced 
emission condition. It is an accurate formulation of 
economic dispatch problem, but also the most difficult 
dynamic optimization problem. Basu [12] developed 
Particle Swarm Optimization (PSO) based goal-
attainment method for solving dynamic economic 
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emission dispatch. The PSO method may prove to be 
very effective in solving nonlinear economic dispatch 
problem, but PSO method often provides a fast and 
acceptable (local optimum) solution, for the heavily 
constrained optimization problems like ECDED 
problem. 

Differential evolution (DE) is a simple yet 
powerful evolutionary algorithm for global optimization 
introduced by [13]. Like other evolutionary algorithms, 
DE is a population-based, stochastic global optimizer 
capable of working reliably in nonlinear environments. 
DE is a robust statistical method for cost minimization, 
which does not make use of single nominal parameter 
vector but instead uses a population of equally important 
vectors. The fittest of an offspring competes one to one 
with of the corresponding parent, which is different from 
the other evolutionary algorithms. In this article, 
opposition-based self-adaptive differential algorithm has 
been developed for ECDED problem. The proposed 
algorithm is applied to ECDED problem of five-unit 
sample test system for the sake of comparison with the 
recently reported paper [12]. Choosing control 
parameters, that is, scaling factor and crossover rate, in a 
DE algorithm is a problem dependent task which 
requires previous experience of the user. In the proposed 
algorithm, the control parameters such as scaling factor 
and crossover rate are not required to be pre-defined. A 
self-adaptive mechanism is used to change these control 
parameters during the evolutionary process. The better 
values of these control parameters lead to better 
individuals, which, in turn, are more likely to survive. 
The convergence characteristic of the DE algorithm is 
enhanced by incorporating opposition-based learning for 
population initialization and for generation jumping. The 
comparison of simulation shows that the opposition-
based self-adaptive differential evolution algorithm out 
performs the PSO method in terms of solution accuracy. 

2. FORMULATION OF ECDED PROBLEM 

The ECDED is formulated as a multi-objective 
optimization problem, which should minimize both the 
fuel cost and emission subject to satisfy the operational 
constraints of the generators and meet the load demand 
plus transmission loss in each interval of the scheduling 
horizon. 

A bi-objective function of ECDED problem can 
be expressed as the combination of economic and 
emission objectives in the following form: 
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where F is the total operating cost over the whole 
dispatch period, T is the number of hours in the time 
horizon, N is the total number of dispatchable units, 
W1is the weighting factor for economic objective such 
that its value should be within the range 0 and 1, and W2 
is the weight factor for emission objective which is 
given by W2 = (1- W1), and Fit(Pit) and Eit(Pit) are fuel 
cost and emission in terms of real power output Pit at 
time t, respectively. The fuel cost function of the ith unit 

including valve-point effects [14], [15] can be expressed 
as  
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where ai, bi, and ci are cost coefficients of ith generating 
unit, ei, fi  are constants from the valve-point effect of 
the ith generating unit, Pi is the power output of the ith 
unit in megawatts at time t. In this article, a nitrogen 
oxide NOx that is more harmful is taken as the selected 
index from the viewpoint of environment conservation. 
The NOx emission of the thermal power station having n 
generating units at interval t in the scheduling horizon is 
represented by the sum of quadratic and exponential 
functions of power generation of each unit. The 
emission due to ith thermal generating unit can be 
expressed as 
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where αi,  βi, γi, δi and, ηi, are emission curve 
coefficients of ith generating unit . 

The minimization of the fuel cost and emission 
are subjected to the following equality and inequality 
constraints: 

1. Real power balance constraint: 
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where t = 1, 2,…,T. PDt is the total power demand at 
time t and PLt is the transmission power loss at time t in 
megawatts. PLt is calculated using the B-Matrix loss 
coefficients and the general form of the loss formula 
using B-coefficients is: 
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2. Real power generation limit: 

maxmin iiti PPP ≤≤            (6) 

where Pimin is the minimum limit, and Pimax is the 
maximum limit of real power of the ith  generating unit 
in megawatts. 

3. Generating unit ramp-rate limits: 

, ..., N    i,     iDRit-P)i(tP

, ..., Ni,         i UR)i(t-PitP

1 1

11
=≤−

=≤−         (7) 

where URi and DRi are the ramp-up and ramp-down 
limits of ith generating unit in megawatts. Thus, the 
constraint of Equation 7 due to the ramp-rate limits is 
modified as 
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such that; 
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4. Constraint satisfaction technique: 
To satisfy the equality constraint of Equation 4, a 

loading of any one the units is selected as the depending 
loading PNt. The power level of Nth generator is given 
by: 
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The transmission loss PLt is function of all the 
generators including that of dependent generator, and it 
is given by: 
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Expanding and rearranging, Equation 11 becomes: 
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The loading of dependent generator can be 
determined by solving Equation 12 using standard 
algebraic method. 

5. Emission constraint: 
Total emission of NOx from the system in the 

entire scheduling horizon should be just less than or 
equal to specified level 
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where Es  is the specified emission limit. 

3. OVERVIEW OF DIFFERENTIAL 
EVOLUTION 

Differential Evolution developed by Storn and Price is 
one of the excellent evolutionary algorithms [13]. 
Differential evolution was developed in 1995 as a 
population-based stochastic evolutionary optimization 
algorithm. In the initialization, a population of NP 
vectors 

, ... , NP,  ;      i X G
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is randomly generated within user–defined bounds. The 
size of the population is specified by the parameter NP 
that has to be set by the user. Usually it is kept fixed 
during an optimization run. The population members are 
real-valued vectors with dimension D that equals the 
number of decision variable in the optimization 
problem. For convenience, the decision vector, Xi

G , is 
represented as . The fitness of each 

individual in the population is evaluated. The 
evolutionary operator’s mutation, recombination and 
selection are applied to every population member to 
generate a new generation. First, a mutant vector is built 
by adding a vector differential to a population vector of 
individual according to the following Equation: 
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where i = 1, 2,…, NP is the individual’s index of 
population; G is the generation; The mutation or scaling 
factor F is a control parameter of DE that has to be set 
by the user. The indexes r1, r2 represents the random and 
mutually different integers generated within the range 
[1, NP] and also different from the running index i. The 
specialty in DE lies in the mutation step whereby two 
vectors are randomly selected from the population and 
the vector difference between them is established. The 
difference is multiplied by a mutation factor, F and 
added to a third randomly chosen vector from the 
population. This step is known as differential variation 
and the result is known as mutant vector. The mutation 
factor controls the amplification of the difference 
between two individuals so as to avoid search stagnation 
and is usually taken from the range [0.1, 1]. DE is 
sensitive to the choice of mutation factor. 

Following the mutation operation, recombination 
is applied to the population. Recombination is employed 
to generate a trial vector by replacing certain parameters 
of the target with the corresponding parameters of a 
randomly selected donor vector. In the recombination 
operation, each gene of the ith individual is reproduced 
from the mutant vectors  
and the current individual   as 
follows: 
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where CR is a crossover or recombination rate in the 
range [0, 1] and has to be set by the user.  

The selection operation selects according to the 
fitness value of the population vector and its 
corresponding trial vector, which vector will survive to 
be a member of the generation. If f denotes the objective 
function under minimization, then 
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In this case, the cost of each trial vector Ui
G+1 is 

compared with that of its parent target vector Xi
G. If the 

cost f, of the target vector Xi
G is lower than that of the 

trial vector, the target is allowed to advance to the next 
generation. Otherwise, the target vector is replaced by 
the trail vector in the next generation. The mutation, 
recombination and selection are repeated for NP times to 
complete one iteration. 

The above iterative process of mutation, 
recombination and selection on the population will 
continue until a user-specified stopping criterion is met. 
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4. OPPOSITION-BASED SELF-ADAPTIVE 
DIFFERENTIAL EVOLUTION ALGORITHM 
FOR ECDED PROBLEM 

The detailed implementation of the developed algorithm 
for ECDED problem is given below:                                   

1. Opposition-based population initialization: 
DE uses NP D-dimensional parameter vectors: 

, ..., NP,  ;   kPok,G 21=         (18) 

in a generation G, with NP being constant over the entire 
optimization process. At the start of the procedure, that 
is, generation G=1, the population vectors have to be 
generated randomly within the limits. For T intervals in 
the generation scheduling horizon, there are T dispatches 
of generation by N generating units. An array of control 
variable vectors or positions of the each agent can be 
represented as: 
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where P0NT  is the generation power output of the Nth 
unit at Tth interval. Opposite population vectors are 
represented as: 
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Opposite population vectors are generated by 
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where Poi,j denote jth variable of ith vector of randomly 
generated initial population. aj and bj are range of the jth 
variable. NP fittest individuals are selected from the set 
{P0, OP} as an initial population P.    
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2. Mutation process: 
Muta vector differential to 

               (23) 

The integers r1 and r2 are chosen randomly over [1, 
NP] 

tion is an operation that adds a 
a population vector of individuals. For the following 
generation G+1, new vectors Vk,G+1 are generated 
according to the following mutation scheme      
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and should be mutually different from the running 
index k. Under certain circumstances, the index k will be 
exchanged by an arbitrary random number r3 ε [1, NP]. 
F is a scaling factor which controls the amplification of 
the differential variation. A self-adaptive control 
mechanism is used to change the control parameter F 
during the run. At generation G=1, the scaling factor F 
for each individual in the population vector are 

randomly generated within the range [0.1, 1.0]. The 
scaling factor for each vector in the population at 
generation G is represented by: 
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The new control parameters Fk,G+1 for subsequent 
gene
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This scheme provides for automatic self-
adapta

 
. Crossover operation:  
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tion and eliminates the need to adapt standard 
deviations of a probability density function. rand are 
uniform random values within the range [0, 1.0]. τ1 
represent probability to adjust control parameter F. Fl, 
Fu and τ1, are taken fixed values of 0.1, 0.9 and 0.8 
respectively. The scaling factor F is varied randomly 
within a specified range during the evolutionary process. 
The range of F is determined by values Fl and Fu. If 
control parameter F is equal to zero, the new trial vector 
is generated using crossover operation but not mutation. 
Therefore Fl value is set equal to 0.1 and Fu value is set 
equal to 0.9. Hence the new scaling factor Fk, G+1 
calculated from Equation 25 takes a value from 0.1 to 
1.0 in a random manner. The range of probability τ   lies 
between 0 and 1. The probability τ1 of changing scaling 
factor F is chosen as 0.8, because higher value of τ 
increases the probability of utilizing better control 
parameters during the optimization process. The 
encoding aspect of scaling factor is shown in Table 1. 

3
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τ2 represent probability to adjust control parameter 
CR. 

The crossover factor CRk,G is randomly taken from 
terval [0, 1] for each individual vector in the initial 

population. New crossover factor CRk,G+1 for each 
individual during evolution process are  calculated by  
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CRl, CRu, τ2 are taken fixed values of 0.1, 0.9 and 
0.8 respectively. The new crossover factor CRk,G+1 
calculated from Equation 27 takes a value between 0 and 
1 by setting CRl equal to 0.1 and CRu equal to 0.9. The 

Table 1. Self-adapting: encoding aspect. 
P1,G F1,G 
P2,G F2,G 
P3,G F3,G 
… … 

PNP,G FNP,G 
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best values of control parameters CRk(G+1) are obtained 
by setting the probability τ2 equal to 0.8.  

4.  Evaluation of each agent: 
Each individual in the population is evaluated using the 
fitness function of the problem to minimize the fuel cost 
and emission functions. The first generator of the sample 
system can be treated as dependent generator. The real 
power limit of the first generator and the unit ramp-rate 
limits are constrained by adding them as a exact penalty 
term to the objective function to form a generalized 
fitness function fk as given below   
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where μ1 and μr  are penalty parameters, and 
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The overall procedure of the opposition-based self-
adaptive differential evolution for ECDED problem can 
be summarized as follows: 
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The penalty terms associated with inequality 
constraints are added to the objective function. The 
penalty terms reflect the violation of the constraints and 
assign a high cost of the penalty function to candidate 
point far from the feasible region. 

5. Estimation and selection:  
The parent is replaced by its child if the fitness of the 
child is better than that of its parent. Explicitly, the 
parent is retained in the next generation if the fitness of 
the child is worse than that of its parent. DE selection 
scheme is based on local competition only, i.e. a child 
Uk,G+1 will compete against one population member Pk,G  
and survivor will enter the new population. The number 
NT of children which may be produced to compete 
against Pk,G should be chosen sufficiently high so that 
sufficient number of child will enter the new population. 
if  Uk,G+1 is worse than that of its parent , the vector 
generation process defined by Equations 23 and 26 is 
repeated up to NT times. If  Uk, G+1 still worse than that 
of its parent, Pk,G+1 will be set to Pk, G. An insufficient 
number NT leads to survival of too many old population 
vectors, which may induce stagnation. To prevent a 
vector Pk,G from surviving indefinitely, DE employs the 
concept of aging. NE defines how many generations a 
population vector may survive before it has to be 
replaced due to excessive age. To this end Pk,G in 
Equation 22 is checked first for how many generations it 
has already lived. If Pk,G has an age of less than NE 
generations it remains unaltered, otherwise Pi,G is 
replaced by Pr3,G with r3 not equal to  k being a 
randomly chosen integer r3 ε [1, NP]. In short, if Pk,G is 
too old, it may not serve as a parent vector any more but 
will be replaced by a randomly chosen member of the 

current generation G. 
6. Opposition-based generation jumping: 

In this approach, the evolutionary process is forced to 
jump to a new solution candidate, which ideally is fitter 
than the current one. Based on a jumping rate Jr, (that is, 
jumping probability) after generating new populations 
by mutation, crossover, and selection, the opposite 
population is calculated, and the NP fittest individuals 
are selected from the union of the current population and 
the opposite population. Generation jumping calculates 
the opposite of each variable based on minimum and 
maximum values of that variable in the current 
population.        

7.  Stopping criterion:  
The procedure from 2 to 6 is repeated until the 
maximum number of iterations reached. 

5. SOLUTION METHODOLOGY 

Step 1. Read the system data. 
Step 2. Assign the initial weighting factors 

W1 and W2 for fuel cost and emission objectives of 
ECDED problem. 

Step 3. Initialize the population vector Po 
randomly within the lower and upper generation limits 
of generating units. 

Step 4. Generate the opposite population OP 
by applying an opposition-based learning scheme in the 
randomly generated population vectors Po. 

Step 5. Select the NP fittest individuals from 
the set {Po, OP} as an initial population P. 

Step 6. Evaluate the fitness of each vector in 
the population. 

Step 7. Generate a new population where 
each candidate individual is generated in parallel 
according to mutation, crossover, and selection. 

Step 8. Calculate the opposite population 
from the new population based on jumping rate Jr.  

Step 9. Select the NP fittest individuals from 
the union of the new population and the opposite 
population. 

Step 10. Loop to Step 4, until predefined 
maximum number of iterations reached. 

Step 11. Check the emission constraint 
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if emission constraint is not satisfied, adjust the 
weighting factors of fuel cost and emission objectives 
and go to Step 3. 

Step 12. Terminate the above iterative 
procedure. 

6. SIMULATION RESULTS AND DISCUSSION 

In order to assess the performance of the opposition-
based self-adaptive differential evolution algorithm for 
ECDED problem, it has been applied to five-unit sample 
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system with cost and emission characteristics exhibiting 
a non-smooth fuel cost and emission functions are 
considered. The cost and emission coefficients, 
generation limits, ramp-rate constraints, loss coefficients 
and load demand for 24 hours of sample system are 
given Appendix, which are taken from [12]. The DE 
based algorithm for emission constrained dynamic 
economic dispatch problem was implemented using 
Matlab 6.5 on a PC with a Pentium IV, 2.8 GHz 
processor. The control parameters chosen for the sample 
system are population size NP=200, maximum number 
of iterations NG=1000, number of trials per iteration 
NT=10, number of generations a population vector may 
survive before it has to be replaced due to excessive age 
NR=5, and jumping rate Jr = 0.6. 

The trade-off curve between economic and 
emission objectives is evaluated by solving the 
emission-constrained dynamic economic dispatch using 
proposed algorithm by varying the weighting factor W1 
between 0 and 1. The weighting factors convert the bi-

objective optimization problem into a single objective 
optimization problem. The minimum generation cost 
and maximum emission level of emission-constrained 
dynamic economic dispatch problem are obtained 
through the developed algorithm by fixing the weighting 
parameters W1 equal to one and W2 equal to zero, which 
gives the condition for minimum fuel cost of generation 
and maximum emission level. The optimal generation 
schedule which gives the maximum generation cost and 
minimum emission level are obtained by fixing the 
weighting parameters W1 equal to zero and W2 equal to 
one which gives the condition for minimum emission 
level and maximum cost of generation. The fuel and 
emission objectives can be controlled by adjusting the 
weighting parameters W1 and W2. The opposition-based 
self adaptive differential evolution approach for 
emission-constrained dynamic economic dispatch can be 
implemented to determine the value of trade-off 
parameters W1 and W2 at which the total emission is just 
less than the specified emission limit. 
 

Table 2. Optimal generation schedule of dynamic economic dispatch (w1=1, w2=0). 
Time  
(h) 

P1  
(MW) 

P2  
(MW) 

P3  
(MW) 

P4 
(MW) 

P5  
(MW) 

P loss 
(MW) 

1 14.8095 98.0826 113.7231 137.0452 50.0196 3.6800 
2 14.9972 98.9270 113.0434 160.4751 51.7393 4.1820 
3 10.4523 99.2815 110.5302 208.0819 51.8180 5.1640 
4 11.9181 99.1119 112.7698 210.5835 101.8019 6.1852 
5 10.5002 98.6940 103.5708 209.8901 142.1480 6.8031 
6 10.1690 104.5959 112.3377 210.0912 178.8157 8.0094 
7 10.2115 96.1525 112.3206 212.8818 202.9120 8.4784 
8 11.8496 98.8964 112.4297 210.2562 229.8335 9.2654 
9 41.8310 98.5027 112.0982 217.9059 229.8741 10.2120 

10 65.6715 98.9234 112.3600 208.0867 229.5145 10.5561 
11 71.0421 105.5885 112.7478 209.8059 231.8705 11.0548 
12 71.6327 115.5313 114.8405 218.3357 231.3665 11.7069 
13 62.4404 97.4525 113.2729 208.6822 232.7110 10.5591 
14 49.7905 98.7327 112.2857 209.1842 230.1770 10.1701 
15 41.7571 98.8856 117.3047 175.6885 229.4390 9.0748 
16 11.9744 101.3312 113.0138 131.1922 229.7226 7.2341 
17 11.5820 98.6270 110.5702 124.8565 219.0461 6.6817 
18 13.7859 93.9592 113.0043 165.8771 229.2975 7.9240 
19 11.3137 99.3818 111.6471 209.9447 230.9870 9.2742 
20 41.2393 107.9754 116.2899 210.2312 238.8878 10.6236 
21 37.5408 99.2357 114.4409 209.8378 228.8425 9.8976 
22 10.4702 100.1646 111.5458 211.5564 179.1895 7.9265 
23 11.4301 105.6879 113.3066 162.8288 139.6807 5.9342 
24 10.4203 86.6914 109.9842 121.7084 138.6988 4.5031 

 

The dynamic economic dispatch result obtained 
through the proposed method is given in Table 2 and the 
minimum emission dispatch result is given in Table 3. 
The optimal dispatch of committed generating units 
obtained at weighting factors at W1=0.5 and W2= 0.5 are 
given in Table 4. The optimal generation schedule (in 
MW) given in Tables 2 to 4 satisfies the generator 
constraints and the load demand plus transmission losses 
in each interval of the scheduling horizon. The 
convergence characteristic of opposition-based self-
adaptive differential evolution algorithm is given in 
Figure 1. The simulation results obtained for various 
weight factors using opposition-based differential 

evolution algorithm have been compared with the results 
obtained using particle swarm optimization method 
reported in [12]. From the Table 5, it is clear that when 
W1 varies from 0 to 1 generation cost increases 
continuously but emission level decreases continuously. 
The fuel cost obtained through proposed approach for 
pure dynamic economic dispatch is 43849$ compared to 
47,852$ of PSO method and total emission for pure 
emission dispatch is 17,992 (lb) compared to 19,094 (lb) 
of PSO method reported in [12]. Figure 2 shows the 
trade off curve plotted against total fuel cost and 
emission. 
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For the specified emission level of 20175 (lb), the 
proposed opposition-based self-adaptive algorithm has 
been applied to ECDED problem to find the optimal 
generation schedule which produces total emission just 
below the specified emission level by adjusting the 
weighting factors W1 and W2 in steps of 0.02 so as to 
achieve the minimum fuel cost with controlled emission. 
The optimal generation schedule (in MW) for the 

specified emission level of emission-constrained 
dynamic economic dispatch problem is given in Table 6, 
that gives the fuel cost of 45,033$ and emission of 
20,165 (lb), which is just below the specified emission 
level and the corresponding weighting factors are 
W1=0.48 and W2= 0.52. The average computation time 
taken by the algorithm for different weighting factors is 
4.23 minutes. 

 
Table 3. Optimal generation schedule of minimum emission dispatch (w1=0, w2=1). 

Time  
(h) 

P1  
(MW) 

P2  
(MW) 

P3  
(MW) 

P4 
(MW) 

P5  
(MW) 

Ploss 
(MW) 

1 56.2654 57.0884 117.4247 119.1773 63.5133 3.4691 
2 63.1614 55.2369 122.5385 100.4761 97.4475 3.8604 
3 59.3409 71.9681 124.7083 133.0737 90.5551 4.6462 
4 68.7330 88.2206 138.7872 133.2144 106.8368 5.7920 
5 66.4201 89.7905 163.9430 138.1666 106.1068 6.4270 
6 66.2125 97.2322 163.5950 177.1908 111.4551 7.6857 
7 70.6295 87.9900 166.4578 183.7193 125.3158 8.1124 
8 71.2219 101.2328 159.6436 181.0833 149.6808 8.8623 
9 70.9401 117.1887 174.3348 194.7316 142.7309 9.9261 

10 71.2130 115.9100 166.3368 199.6096 161.2634 10.3329 
11 71.1010 117.0058 174.7215 208.7548 159.2354 10.8186 
12 71.3204 120.7789 174.9990 210.4358 173.8984 11.4324 
13 70.5742 113.4659 174.8817 205.7224 149.6920 10.3361 
14 70.7381 121.2539 174.1682 183.9385 149.8144 9.9132 
15 70.5258 110.2789 173.1343 186.1666 122.8078 8.9135 
16 68.7379 95.2374 156.6122 168.0502 98.3637 7.0014 
17 70.7853 85.7097 139.9705 154.0308 113.9328 6.4291 
18 71.1004 95.4525 166.5646 158.4588 124.0569 7.6332 
19 70.5127 100.7193 174.3128 182.1679 135.1489 8.8616 
20 70.1437 119.2889 171.1080 204.8644 148.9545 10.3595 
21 70.8418 110.4890 174.0827 196.8726 137.3467 9.6328 
22 70.4696 97.7109 144.5786 182.7344 117.1382 7.6316 
23 66.5272 76.8006 133.0156 150.3484 106.0359 5.7276 
24 57.0801 58.3239 129.2007 133.8823 88.9123 4.3993 

 
Table 4. Optimal generation schedule of combined dynamic economic and emission dispatch (w1=0.5, w2=0.5). 

Time  
(h) 

P1  
(MW) 

P2  
(MW) 

P3  
(MW) 

P4 
(MW) 

P5  
(MW) Ploss (MW) 

1 26.0516 99.5928 112.7761 125.1264 50.0842 3.6312 
2 16.7775 98.2528 112.8123 124.8851 86.2929 4.0206 
3 12.4134 94.3960 112.1398 124.6751 136.1269 4.7512 
4 42.3932 98.4898 113.0815 142.1870 139.7110 5.8625 
5 35.8226 98.7052 130.1449 160.0377 139.7902 6.5007 
6 55.6768 98.1897 112.6778 209.5924 139.7287 7.8653 
7 70.7257 98.6679 114.5558 210.1262 140.2361 8.3116 
8 70.7781 107.1409 123.7421 209.7805 151.6000 9.0415 
9 70.9460 107.5942 112.5017 209.7503 199.3276 10.1198 

10 65.6928 98.5185 112.5277 209.8310 227.9857 10.5557 
11 72.0481 102.0320 116.9607 211.3345 228.6450 11.0203 
12 71.8599 102.6370 126.6377 220.7283 229.7500 11.6129 
13 70.9563 99.0133 112.6088 206.0731 225.8877 10.5393 
14 50.8889 98.4904 112.1312 209.6104 229.0463 10.1673 
15 70.4956 98.5579 112.6937 159.6394 221.6448 9.0314 
16 71.8869 98.8996 112.6701 124.8475 178.7273 7.0314 
17 71.1463 98.6381 113.0285 142.2645 139.4026 6.4801 
18 70.8787 98.6762 113.4308 192.2328 140.5734 7.7919 
19 70.9653 98.7463 115.4822 208.6504 169.2014 9.0456 
20 71.8591 100.2897 113.6500 209.7636 218.9706 10.5329 
21 72.4357 98.7192 114.1106 175.4529 229.0666 9.7850 
22 71.9374 98.9381 135.6864 125.5746 180.4608 7.5973 
23 41.9785 98.3295 112.2908 140.5840 139.6137 5.7965 
24 11.9886 90.5298 111.3470 123.2329 130.4078 4.5061 
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Table 5. Comparison of fuel cost and emission objective functions with PSO method. 

Weights PSO Method [12] Proposed Method 
W1 W2 Fuel cost ($) Emission (lb) Fuel cost ($) Emission (lb) 
1.0 0.0 47852 22405 43849 23022 
0.8 0.2 50124 21802 44442 22237 
0.5 0.5 50893 20163 44967 20466 
0.2 0.8 52047 20035 48636 18272 
0.0 1.0 53086 19094 52347 17992 

 
 

Table 6. Optimal generation schedule of emission-constrained dynamic economic dispatch (w1=0.48, w2=0.52). 
Time  
(h) 

P1  
(MW) 

P2  
(MW) 

P3  
(MW) 

P4 
(MW) 

P5  
(MW) P loss (MW) 

1 15.9856 20.8843 112.5146 124.9475 139.1360 3.4679 
2 12.2198 49.0128 112.6367 125.2050 139.8389 3.9132 
3 28.7822 72.3547 113.3437 125.1337 140.0458 4.6601 
4 58.6233 98.9758 113.3404 124.9853 139.9108 5.8357 
5 71.3906 98.6138 114.9793 140.2076 139.2822 6.4736 
6 70.8220 100.4053 114.3266 190.1285 140.1050 7.7874 
7 70.5681 99.2961 113.1395 211.1023 140.2165 8.3224 
8 70.8784 101.9631 122.4867 211.4912 156.2165 9.0358 
9 71.5777 98.6052 113.6158 210.6021 205.7009 10.1017 

10 63.5507 99.6994 112.8857 208.8088 229.6143 10.5589 
11 72.0622 99.7723 119.2898 209.9828 229.8950 11.0022 
12 71.4697 98.2784 142.3658 209.8747 229.5157 11.5044 
13 67.7437 98.5421 112.3142 209.4280 226.5235 10.5514 
14 71.2510 98.1541 142.6741 209.6722 178.2074 9.9588 
15 64.5486 98.4480 112.3246 159.6850 228.0438 9.0499 
16 71.9714 98.7654 112.7553 125.1865 178.3516 7.0302 
17 68.6676 98.2865 112.5163 144.9778 140.0345 6.4828 
18 69.5709 98.4063 113.1160 194.9778 139.7305 7.8015 
19 70.9664 105.5751 119.6877 209.7752 157.0459 9.0503 
20 71.5721 100.4992 125.8431 210.6314 205.9122 10.4580 
21 71.0400 124.4544 116.9678 212.1722 165.2222 9.8565 
22 48.8391 99.1083 113.9368 209.8532 141.0606 7.7980 
23 18.8721 98.5554 112.8401 170.1933 132.5460 5.9088 
24 10.1595 97.9892 112.0978 124.6402 122.6485 4.5351 

 
 

 
 

Fig. 1. Convergence characteristic of combined economic and emission objective 
functions (w1=0.5, w2=0.5). 
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Fig. 2. Trade-off curve between fuel cost and emission. 

 
7. CONCLUSION [4] King, T.D., El-Harwary, M.E. and Ferial El-

Hawary., 1995. Optimal environmental dispatching 
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A novel DE based approach for the solution of emission-
constrained dynamic economic dispatch has been 
developed in this paper. The self-adaptive scheme 
introduced in the algorithm automatically adjusts its 
control parameter values during evolution process, 
which avoids the complication of tuning control 
parameters for heavily constrained optimization problem 
like ECDED problem. The opposition-based learning for 
population initialization and for generation jumping is 
utilized to accelerate the convergence of the proposed 
DE algorithm. The applicability of the algorithm for 
solving emission-constrained dynamic economic 
dispatch problem is represented on five-unit sample 
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the proposed method and its potential for solving 
nonlinear emission-constrained dynamic economic 
problem in a power system. 
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APPENDIX 

 
Appendix I: Cost coefficients and generation limits for 5-unit system 

Quantities Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 
a  ($/(MW)2 h) 0.0080 0.0030 0.0012 0.0010 0.0015 
b  ($/MWh) 2.0 1.8 2.1 2.0 1.8 
c  ($/h) 25 60 100 120 40 
e  ($/h) 100 140 160 180 200 
f  (1/MW) 0.042 0.040 0.038 0.037 0.035 
Pmin  (MW) 10 20 30 40 50 
Pmax  (MW) 75 125 175 250 300 
UR (MW/h) 30 30 40 50 50 
DR (MW/h) 30 30 40 50 50 

 
 
Appendix II: Emission coefficients for 5-unit system 

Quantities Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 
α (lb/(MW)2 h) 0.0180 0.0150 0.0105 0.0080 0.0120 
β (lb/MWh) -0.805 -0.555 -1.355 -0.600 -0.555 
γ  (lb/h) 80 50 60 45 30 
η  (lb/h) 0.6550 0.5773 0.4968 0.4860 0.5035 
δ (1/MW) 0.02846 0.02446 0.02270 0.01948 0.02075 

 
 

Appendix III:  Transmission loss coefficients for 5-unit system 

per MWB     

0.000035  0.000014  0.000012  0.000018  0.000020
0.000014  0.000040  0.000010  0.000020  0.000015
0.000012  0.000010  0.000039  0.000016  0.000015
0.000018  0.000020  0.000016  0.000045  0.000014
0.000020  0.000015  0.000015  0.000014  0.000049
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Appendix IV: Load demand for 24 hours 
 Time 

(h) 
Load 
(MW) 

Time 
(h) 

Load 
(MW) 

Time 
(h) 

Load 
(MW) 

Time 
(h) 

Load 
(MW) 

1 410 7 626 13 704 19 654 
2 435 8 654 14 690 20 704 
3 475 9 690 15 654 21 680 
4 530 10 704 16 580 22 605 
5 558 11 720 17 558 23 527 
6 608 12 740 18 608 24 463 
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