Hydrolysis of Microalgae Spirulina platensis, Chlorella sp., and Macroalgae Ulva lactuca for Bioethanol Production

Kusmiyati Kusmiyati, Agnes Heratri, Sinju Kubikazari, Arif Hidayat, Hadiyanto Hadiyanto


Algal bioethanol is a renewable alternative fuel for gasoline that resulted in no disruption in food sources. This study investigated the effect of acid hydrolysis using H2SO4 on microalgae (Chlorella sp. and Spirulina platensis) and a macroalga (Ulva lactuca) with varying acid concentrations, temperatures, and hydrolysis time. The acid hydrolysis was carried out followed by separated hydrolysis and fermentation method (SHF). The hydrolysis process was used to break down the cell walls of algae and to convert complex carbohydrates from the cell wall into simple sugars. The Chlorella sp., Spirulina platensis, and Ulva lactuca were hydrolyzed with H2SO4 concentration of 0.5–2 N. The results showed that the highest total sugar concentration of Ulva lactuca biomass was 12.85% (v/v) when using hydrolysis of 2 N H2SO4. However, for Spirulina platensis and Chlorella sp resulted only 4% (v/v) and 10% (v/v), respectively. The results are in agreement with proximate carbohydrate analysis that showed the highest carbohydrate of 74.82% on Ulva lactuca was obtained as compare to that on Spirulina platensis and Chlorella sp. of 53.85% and 55.39%, respectively. Thus, Ulva lactuca was further investigated to determine the effects of hydrolysis time from 60 to 120 min at different temperatures of 40 –100°C. The maximum total sugar concentration (23.04%; v/v) was obtained using 2 N H2SO4 at 100°C for 60 min. The fermentation time on bioethanol production was also investigated for Ulva lactuca hydrolysate (2 N H2SO4 at 80°C for 60 min) at a different time of 24–72 h. The highest bioethanol concentration (1.45%; v/v) was obtained at a fermentation time of 72 h. This study indicated that acid hydrolysis is useful for rupturing the cell walls of Chlorella sp., Spirulina platensis, and Ulva lactuca for fermentative bioethanol production.


acid hydrolysis; bioethanol; Chlorella sp.; Spirulina platensis; Ulva lactuca

Full Text:



Vohra M., Manwar J., Manmode R., Padgilwar S., and Patil S., 2014. Bioethanol production: Feedstock and current technologies. Journal of Environmental Chemical Engineering 2(1): 573-584.

BP Statistical Review of World Energy Statistical Review of World .2019. The Editor BP Statistical Review of World Energy, 1–69.

Sopian K. and W.R.W. Daud. 2006. Challenges and future developments in proton exchange membrane fuel cells. Renewable Energy 31(5): 719-727.

Alam F., Date A., Rasjidin R., Mobin S., Moria H., and Ui A., 2012. Biofuel from algae-Is it a viable alternative?. Procedia Engineering 49: 221-227.

Demirbas A., 2008. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Cconversion and Management 49(8): 2106-2116.

Balat M., Balat H., and Öz C., 2008. Progress in bioethanol processing. Progress in Energy and Combustion Science 34(5): 551-573.

Hirani A.H., Javed N., Asif M., Basu S.K., and Kumar A., 2018. A review on first-and second-generation biofuel productions. In Biofuels: Greenhouse Gas Mitigation and Global Warming (pp. 141-154). Springer, New Delhi.

Deenanath E.D., Iyuke S., and Rumbold K. 2012. The bioethanol industry in Sub-Saharan Africa: history, challenges, and prospects. BioMed Research International 2012: 1-11.

Arifin Y., Tanudjaja E., Dimyati A. and Pinontoan R., 2014. A second generation biofuel from cellulosic agricultural by-product fermentation using clostridium species for electricity generation. Energy Procedia 47: 310-315.

Aditiya H.B., Mahlia T.M.I., Chong W.T., Nur H., and Sebayang A.H., 2016. Second generation bioethanol production: A critical review. Renewable and Sustainable Energy Reviews 66: 631-653.

Zhu L., Li S., Hu T., Nugroho Y.K., Yin Z., Hu D., Chu R., Mo F., Liu C., and Hiltunen E., 2019. Effects of nitrogen source heterogeneity on nutrient removal and biodiesel production of mono-and mix-cultured microalgae. Energy Conversion and Management 201(9): 112-144.

Dragone G., Fernandes B.D., Abreu A.P., Vicente, A.A., and Teixeira J.A., 2011. Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Applied Energy 88(10): 3331-3335.

Chen C.Y., Zhao X.Q., Yen H.W., Ho S.H., Cheng, C.L., Lee D.J., Bai F.W., and Chang J.S., 2013. Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal 78: 1-10.

de Farias Silva C.E. and A. Bertucco. 2016. Bioethanol from microalgae and cyanobacteria: a review and technological outlook. Process Biochemistry 51(11): 1833-1842.

Ho S.H., Huang S.W., Chen C.Y., Hasunuma T., Kondo A., and Chang, J.S., 2013. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresource Technology, 135: 191-198.

Wang L., Li Y., Sommerfeld M., and Hu Q., 2013. A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid. Bioresource Technology 129: 289-295.

Harun R. and M.K. Danquah. 2011. Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chemical Engineering Journal 168(3): 1079-1084.

Cheng Y.S., Zheng Y., Labavitch J.M., and VanderGheynst J.S. 2011. The impact of cell wall carbohydrate composition on the chitosan flocculation of Chlorella. Process Biochemistry, 46(10): 1927-1933.

Markou G., Angelidaki I., Nerantzis E., and Georgakakis D., 2013. Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis. Energies 6(8): 3937-3950.

Sirajunnisa A.R. and D. Surendhiran. 2016. Algae–A quintessential and positive resource of bioethanol production: A comprehensive review. Renewable and Sustainable Energy Reviews 66: 248-267.

John R.P., Anisha G.S., Nampoothiri K.M., and Pandey A., 2011. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresource Technology 102(1): 186-193.

Jambo S.A., Abdulla R., Azhar S.H.M., Marbawi H., Gansau J.A., and Ravindra P. 2016. A review on third generation bioethanol feedstock. Renewable and Sustainable Energy Reviews 65: 756-769.

Rabelo S.C., Maciel Filho R., and Costa A.C. 2009. Lime pretreatment of sugarcane bagasse for bioethanol production. Applied Biochemistry and Biotechnology 153(1-3): 139-150.

Kim K.H., Choi I.S., Kim H.M., Wi S.G., and Bae H.J. 2014. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Bioresource Technology 153: 47-54.

Cheng J.J. and G.R. Timilsina. 2011. Status and barriers of advanced biofuel technologies: a review. Renewable Energy 36(12): 3541-3549.

Iranmahboob J., Nadim F., and Monemi S., 2002. Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips. Biomass and Bioenergy 22(5): 401-404.

Chatzifotis S. and T. Takeuchi. 1997. Effect of supplemental carnitine on body weight loss, proximate and lipid compositions and carnitine content of red sea bream (Pagrus major) during starvation. Aquaculture 158(1-2): 129-140.

Lynch J.M. and D.M. Barbano. 1999. Kjeldahl nitrogen analysis as a reference method for protein determination in dairy products. Journal of AOAC International 82(6): 1389-1398.

Trisant P.N. and I. Gunardi. 2020. The Influence of Hydrolysis Time in Hydrothermal Process of Cellulose from Sengon Wood Sawdust. In Macromolecular Symposia 391(1): 2000016, 1-5.

Um B.H. and Y.S. Kim. 2009. A chance for Korea to advance algal-biodiesel technology. Journal of Industrial and Engineering Chemistry 15(1): 1-7.

Khoeyi Z.A., Seyfabadi J., and Ramezanpour Z., 2012. Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquaculture International 20(1): 41-49.

Ortiz J., Romero N., Robert P., Araya J., Lopez-Hernández J., Bozzo C., Navarreta E., Osorio A., and Rios A., 2006. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food chemistry 99(1): 98-104.

Yaich H., Garna H., Besbes S., Paquot M., Blecker, C., and Attia H., 2011. Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chemistry 128(4): 895-901.

Sui Z., Gizaw Y., and BeMiller J.N., 2012. Extraction of polysaccharides from a species of Chlorella. Carbohydrate Polymers 90(1): 1-7.

Harun R., Danquah M.K., and Forde G.M., 2010. Microalgal biomass as a fermentation feedstock for bioethanol production. Journal of Chemical Technology and Biotechnology 85(2): 199-203.

Borines M.G., de Leon R.L., and Cuello J.L., 2013. Bioethanol production from the macroalgae Sargassum spp. Bioresource Technology 138: 22-29.

Ramachandra T.V., and D. Hebbale. 2020. Bioethanol from macroalgae: Prospects and challenges. Renewable and Sustainable Energy Reviews 117: 109-479.

Okuda K., Oka K., Onda A., Kajiyoshi K., Hiraoka M., and Yanagisawa K. 2008. Hydrothermal fractional pretreatment of sea algae and its enhanced enzymatic hydrolysis. Journal of Chemical Technology and Biotechnology: International Research in Process, Environmental and Clean Technology 83(6): 836-841.

Harun R. and M.K. Danquah. 2011. Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochemistry 46(1): 304-309.

Zhou N., Zhang Y., Wu X., Gong X., and Wang, Q. 2011. Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and MgCl2. Bioresource Technology 102(21): 10158-10161.

El-Sayed W.M.M., Ibrahim H.A.H., Abdul-Raouf U.M., and El-Nagar M.M., 2016. Evaluation of bioethanol production from Ulva lactuca by Saccharomyces cerevisiae. J Biotechnol Biomater 6(226): 2: 1-10.

Kusmiyati K., Kurniawan S.A., Azis A., Aryadi T., and Hadiyanto H., 2018. Enzymatic hydrolysis and bioethanol production from Samanea Saman Using Simultaneous Saccharification and fermentation by Saccharomyces Cerevisiae and Pichia Stipitis. Scientific Study and Research. Chemistry and Chemical Engineering, Biotechnology, Food Industry 19(2): 157-167.

Hernández D., Riaño B., Coca M., and García-González M.C., 2015. Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chemical Engineering Journal 262: 939-945.

Nguyen M.T., Choi S.P., Lee J., Lee J.H., and Sim S.J., 2009. Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J Microbiol Biotechnol19(2): 161-166.

Trivedi N., Gupta V., Reddy C.R.K., and Jha B., 2013. Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Bioresource Technology 150: 106-112.

Chng L.M., Lee K.T., and Chan D.J.C., 2017. Synergistic effect of pretreatment and fermentation process on carbohydrate-rich Scenedesmus dimorphus for bioethanol production. Energy Conversion and Management 141: 410-419.

Kusmiyati K., Hadiyanto H., and Kusumadewi I., 2016. Bioethanol Production from Iles-Iles (Amorphopallus campanulatus) Flour by Fermentation using Zymomonas mobilis. International Journal of Renewable Energy Development 5(1): 9.