Bio-pretreatment Enhances Biogas Production from Co-digestion of Rice Straw and Pig Manure

Nam Sy Tran, Thao Van Huynh, Ngan Vo Chau Nguyen, Kjeld Ingvorsen


Co-digestion between biomass and livestock waste increases methane production by providing an optimal C/N ratio. Also, bio-pretreatment has received more attention due to its effectiveness in biomass-derived material hydrolysis into biodegradable carbohydrates. Rice straw (RS) is abundant in the Vietnamese Mekong Delta (VMD), which potentially enhances biogas production from co-digestion with pig manure (PM) in case of shortage of livestock waste for biogas digesters. However, the high solid content of RS and its higher C/N ratio generally results in the low productivity of biogas when used as sole substrate. Therefore, we assessed the efficiency of biological pretreatment of RS on biogas production through single-stage batch anaerobic digestion under mesophilic conditions. The substrate ratio-based on volatile-solid (VS) rate was used at a 1:1 mixture (RS:PM) with a total concentration supplemented at 45 g-VS/L over a 60-day batch digestion. The bio-solutions included de-chlorinated tap water (TW), digester effluent (DE), ditch water (DW), and anoxic sediment (AS). The findings demonstrated that the pretreatment of RS enhanced biogas production by 78-84% compared with PM digestion without RS or bio-pretreatment. Likewise, AS and DE bio-solutions achieved the highest methane yield, which increased between 51% and 58%. Overall, the methane content (v/v) ranged from 50% to 55% during the stable phase, with VS removal efficiencies ranging from 39 to 46%. This study shows that DE and AS inoculums are feasible approaches for obtaining significant increases in biogas yields in co-digestion of RS and PM. Bio-solution pretreatment experimentation on distinctive biomass-derived materials under a series of C/N ratios is suggested.


Anaerobic co-digestion; Biogas production; Biological pretreatment; Pig manure; Rice straw

Full Text:



Yadvika, Santosh, Sreekrishnan T.R., Kohli S., and Rana V., 2004. Enhancement of biogas production from solid substrates using different techniques––a review. Bioresource Technology 95, 1–10, doi: 10.1016/j.biortech.2004.02.010.

Taherdanak M. and Zilouei H., 2014. Improving biogas production from wheat plant using alkaline pretreatment. Fuel 115, 714–719, doi: 10.1016/j.fuel.2013.07.094.

Thu C.T.T., Cuong P.H., Hang L.T., Chao N.V., Anh L.X., Trach N.X. and Sommer S.G., 2012. Manure management practices on biogas and non-biogas pig farms in developing countries – using livestock farms in Vietnam as an example. Journal of Cleaner Production 27, 64–71, doi: 10.1016/j.jclepro.2012.01.006.

Nam T.S., Hong L.N.D., Thao H.V., Chiem N.H., Viet L.H., and Kjeld I., 2017. Enhancing biogas production by anaerobic co-digestion of water hyacinth and pig manure. Journal of Vietnamese Environment 8 (3), 195–199, doi: 10.13141/jve.vol8.no3.pp195-199.

Gaworski M., Jablonski S., Pawlaczyk-Graja I., Ziwwiecki R., and Rutkowski P., 2017. Enhancing biogas plant production using pig manure and corn silage by adding wheat straw processed with liquid hot water and steam explosion. Biotechnolgy for Biofuels 10 (1), 259, doi: 10.1186/s13068-017-0922-x.

Lymperatou A., Rasmussen N.B., Gavala H.N., and Skiadas I.V., 2021. Improving the Anaerobic Digestion of Swine Manure through an Optimized Ammonia Treatment: Process Performance, Digestate and Techno-Economic Aspects. Energies 14 (3), 787, doi: 10.3390/en14030787.

Fatih Demirbas M., Balat M., and Balat H., 2011. Biowastes-to-biofuels. Energy Conversion and Management 52, 1815–1828, doi: 10.1016/j.enconman.2010.10.041.

Binod P., Sindhu R., Singhania R.R., Vikram S., Devi L., Nagalakshmi S., Kurien N., Sukumaran R.K., and Pandey A., 2010. Bioethanol production from rice straw: An overview. Bioresource Technology 101, 4767–4774, doi: 10.1016/j.biortech.2009.10.079.

Diep N.Q., Sakanishi K., Nakagoshi N., Fujimoto S. and Minowa T., 2015. Potential for rice straw ethanol production in the Mekong Delta, Vietnam. Renewable Energy 74, 456–463, doi: 10.1016/j.renene.2014.08.051.

Gadde B., Menke C., and Wassmann R., 2009. Rice straw as a renewable energy source in India, Thailand, and the Philippines: Overall potential and limitations for energy contribution and greenhouse gas mitigation. Biomass and Bioenergy 33, 1532–1546, doi: 10.1016/j.biombioe.2009.07.018.

Lehtomäki A., Huttunen S., and Rintala J.A., 2007. Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: Effect of crop to manure ratio. Resources, Conservation and Recycling 51 (3), 591–609, doi: 10.1016/j.resconrec.2006.11.004.

Ning J., Zhou M., Pan X., Li C., Wang T., Cai G., Wang R., Li J. and Zhu G., 2019. Simultaneous biogas and biogas slurry production from co-digestion of pig manure and corn straw: Performance optimization and microbial community shift. Bioresource Technology 282, 37–47, doi: 10.1016/j.biortech.2019.02.122.

Silva I., Jorge C., Brito L., and Duarte E., 2021. A pig slurry feast/famine feeding regime strategy to improve mesophilic anaerobic digestion efficiency and digestate hygienisation. Waste Management & Research: The Journal for a Sustainable Circular Economy 39 (7), 947–955, doi: 10.1177/0734242X20972794.

Zhong B., An X., Shen F., An W., and Zhang Q., 2021. Anaerobic Co-digestion of Rice Straw and Pig Manure Pretreated with a Cellulolytic Microflora: Methane Yield Evaluation and Kinetics Analysis. Frontiers in Bioengineering and Biotechnology 8, 579405, doi: 10.3389/fbioe.2020.579405.

Kumari D. and Singh R., 2018. Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable and Sustainable Energy Reviews 90, 877–891, doi: 10.1016/j.rser.2018.03.111.

Dehghani M., Karimi K., and Sadeghi M., 2015. Pretreatment of Rice Straw for the Improvement of Biogas Production. Energy Fuels 29, 3770–3775, doi: 10.1021/acs.energyfuels.5b00718.

Sindhu R., Binod P., and Pandey A., 2016. Biological pretreatment of lignocellulosic biomass – An overview. Bioresource Technology 199, 76–82, doi: 10.1016/j.biortech.2015.08.030.

Haruta S., Cui Z., Huang Z., Li M., Ishii M., and Igarashi Y., 2002. Construction of a stable microbial community with high cellulose-degradation ability. Applied Microbiology and Biotechnology 59 (4–5), 529–534, doi: 10.1007/s00253-002-1026-4.

Kumari D., Jain Y., and Singh R., 2021. A study on green pretreatment of rice straw using Petha wastewater and Mausami waste assisted with microwave for production of ethanol and methane. Energy Conversion and Management: X 10, 100067, doi: 10.1016/j.ecmx.2020.100067.

APHA, 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, American Water Works Association and Water Environmental Federation, Washington DC, USA.

Schommer V.A., Wenzel B.M., and Daroit D.J., 2020. Anaerobic co-digestion of swine manure and chicken feathers: Effects of manure maturation and microbial pretreatment of feathers on methane production. Renewable Energy 152, 1284–1291, doi: 10.1016/j.renene.2020.01.154.

Chen J.L., Ortiz R., Steele T.W.J., and Stuckey D.C., 2014. Toxicants inhibiting anaerobic digestion: A review. Biotechnology Advances 32 (8), 1523–1534, doi: 10.1016/j.biotechadv.2014.10.005.

Polprasert C., Edwards P., Rajput V.S. and Pacharaprakiti C., 1986. Integrated Biogas Technology in the Tropics 1. Performance of Small-Scale Digesters. Waste Management and Research: The Journal for a Sustainable Circular Economy 4, 197–213, doi: 10.1177/0734242X8600400120.

Ye Y.J., Li D., Sun Y., Wang G., Yuan Z., Zhen F. and Wang Y., 2013. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Management 33, 2653–2658, doi: 10.1016/j.wasman.2013.05.014.

Lei Z., Chen J., Zhang Z., and Sugiura N., 2010. Methane production from rice straw with acclimated anaerobic sludge: Effect of phosphate supplementation. Bioresource Technology 101, 4343–4348, doi: 10.1016/j.biortech.2010.01.083.

El-Mashad H.M., and Zhang R., 2010. Biogas production from co-digestion of dairy manure and food waste. Bioresource Technology 101, 4021–4028, doi: 10.1016/j.biortech.2010.01.027.

Dinuccio E., Balsari P., Gioelli F., and Menardo S., 2010. Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses. Bioresource Technology 101, 3780–3783, doi: 10.1016/j.biortech.2009.12.113.

Risberg K., Sun L., Levén L., Horn S.J. and Schnürer A., 2013. Biogas production from wheat straw and manure – Impact of pretreatment and process operating parameters. Bioresource Technology 149, 232–237, doi: 10.1016/j.biortech.2013.09.054.

Chandra R., Takeuchi H., and Hasegawa T., 2012. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews 16, 1462–1476, doi: 10.1016/j.rser.2011.11.035.

Zhang C., Su H., Baeyens J., and Tan T., 2014. Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews 38, 383–392, doi: 10.1016/j.rser.2014.05.038.

Zhong W., Zhang Z., Luo Y., Sun S., Qiao W., and Xiao M., 2011. Effect of biological pretreatments in enhancing corn straw biogas production. Bioresource Technology 102, 11177–11182, doi: 10.1016/j.biortech.2011.09.077.

Jash T. and Ghosh D.N., 1996. Studies on the solubilization kinetics of solid organic residues during anaerobic biomethanation. Energy 21, 725–730, doi: 10.1016/0360-5442(95)00123-9.

Zhang W., Wei Q., Wu S., Qi D., Li W., Zuo Z., and Dong R., 2014. Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions. Applied Energy 128, 175–183, doi: 10.1016/j.apenergy.2014.04.071.

Meyer T. and Edwards E.A., 2014. Anaerobic digestion of pulp and paper mill wastewater and sludge. Water Research 65, 321–349, doi: 10.1016/j.watres.2014.07.022.

He Y., Pang Y., Liu Y., Li X., and Wang K., 2008. Physicochemical Characterization of Rice Straw Pretreated with Sodium Hydroxide in the Solid State for Enhancing Biogas Production. Energy Fuels 22, 2775–2781, doi: 10.1021/ef8000967.

Lee J., 1997. Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology 56, 1–24, doi: 10.1016/S0168-1656(97)00073-4.

Jin S. and Chen H., 2007. Near-infrared analysis of the chemical composition of rice straw. Industrial Crops and Products 26, 207–211, doi: 10.1016/j.indcrop.2007.03.004.

Saha B.C., 2003. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30, 279–291, doi: 10.1007/s10295-003-0049-x.

Sapci Z., 2013. The effect of microwave pretreatment on biogas production from agricultural straws. Bioresource Technology 128, 487–494, doi: 10.1016/j.biortech.2012.09.094.

Gao J., Chen L., Yuan K., Huang H., and Yan Z., 2013. Ionic liquid pretreatment to enhance the anaerobic digestion of lignocellulosic biomass. Bioresource Technology 150, 352–358, doi: 10.1016/j.biortech.2013.10.026.