Experimental Comparison between Direct and Indirect Methods Adopted for Evaluating CPV System Optical Performance

Carlo Renno, Fabio Petito, Maria Puglia, Olga Di Marino

Abstract


In concentrating photovoltaic (CPV) systems, energy conversion efficiency depends on solar cell characteristics and optical parameters such as the optical efficiency (ηopt) that affects solar radiation concentrated on TJ cells. Hence, it is important to standardize ηopt definition, measuring methods and instruments to compare different CPV technologies. ηopt is linked to optical concentration factor (Copt) representing how many times solar flux is increased by optics. The CPV systems optical characterization must be practical; so, two methodologies of concentrated solar flux are compared. Indirect method is based on generated photocurrent, while direct method on thermal sensors. The aim is to evaluate experimentally methodologies able to estimate Copt and ηopt in CPV systems. An increase of Copt from 16 to 310 until lens height of 24 cm with ηopt of 14%, is obtained by indirect methodology. As for direct methodology, an increase of cell-lens distance from 10.5 to 21 cm leads to variation of Copt from 22 to 315 with ηopt of 16%. The methodologies results are comparable; indirect method underestimates the optical performances. The novelty of this paper is the comparison under same operation conditions (TJ cell size, Copt range, ηopt and focal distance) of two methodologies able to determine optical parameters and standardisable for similar point-focus CPV configurations.

Keywords


CPV system; Direct and indirect methodology; Experimental analysis; Fresnel lens; Optical performance

Full Text:

PDF

References


Fikri M. A., Samykano M., Pandey A.K., Kadirgama K., Kumar R.R., Selvaraj J., and Saidur R., 2022. Recent progresses and challenges in cooling techniques of concentrated photovoltaic thermal system: A review with special treatment on phase change materials (PCMs) based cooling. Solar Energy Materials and Solar Cells 241: 111739.

Baiju A. and M. Yarema. 2022. Status and challenges of multi-junction solar cell technology. Frontiers in Energy Research 10: 971918.

Renno C., 2019. Thermal and electrical modelling of a CPV/T system varying its configuration. Journal of Thermal Science 28: 123-132.

Iqbal W., Ullah I., and Shin S., 2023. Optical developments in concentrator photovoltaic systems—a review. Sustainability 15(13): 10554.

Ju X., Xu C., Liao Z., Du X., Wei G., Wang Z., and Yang Y., 2017. A review of concentrated photovoltaic-thermal (CPVT) hybrid solar systems with waste heat recovery (WHR). Science Bulletin 62: 1388–1426.

Renno C., 2018. Experimental and theoretical analysis of a linear focus CPV/T system for cogeneration purposes. Energies 11: 2960.

Brogren M., 2014. Optical efficiency of low-concentrating solar energy systems with parabolic reflectors. Doctoral dissertation, Acta Universitatis Upsaliensis.

McLaughlin L., Laubscher H. F., Nguyen J., Banh L., and Konings J., 2023. Development of readily available and robust high heat flux Gardon gauges. In SolarPACES Conference Proceedings, 2.

McLaughlin L., Laubsher H.F., Schroeder N., Armijo K., Konings J., Dolce R., and Van de Bos K., 2024. Flux sensor measurement and calibration requirements intensity heat flux applications: A trade study. SolarPACES Conference Proceedings.

Verma R.N., Kumar R., Dixit A., and Chandra L., 2018. A low temperature water-cooled radiation calorimeter for estimation of concentrated solar irradiance. Solar Energy 167: 194–209.

Thelen M., Raeder C., Willisch C., and Dibowski G. 2017. A high-resolution optical measurement system for rapid acquisition of radiation flux density maps. AIP Conference Proceedings 180: 150005.

Zhang K., Su Y., Wang H., Wang Q., Wang K., Niu Y., and Song J. 2022. Highly Concentrated Solar Flux of Large Fresnel Lens Using CCD Camera-Based Methos. Sustainability 14(7): 11062.

González C., Vilaplana J.M., Bogeat J.A., and Serrano A., 2022. Comparison of global UV spectral irradiance measurements between a BTS CCD-array and a Brewer spectroradiometer. Atmospheric Measurement Techniques 15(13): 4125-4133.

Bengoechea J., Ezquer M., Petrina I., and Lagunas A.R., 2011. Experimental set-up to evaluate the degradation of the optical components of a CPV module. AIP Conference Proceedings 1407(1): 84-87.

Renno C., Petito F., Landi G., and Neitzert H.C., 2017. Experimental characterization of a concentrating photovoltaic system varying the light concentration. Energy Conversion and Management 138: 119-130.

Benítez P., Miñano J.C., Zamora P., Mohedano R., Cvetkovic A., Buljan M., and Hernández M., 2010. High performance Fresnel-based photovoltaic concentrator. Optics Express 18(101): A25-A40.

Wiesenfarth M., Steiner M., Wolf J., Schmid T. and Bett A.W., 2014. Investigation of different Fresnel lens designs and methods to determine the optical efficiency. AIP Conference Proceedings, 1616(1): 97-101.

Wiesenfarth M., Dörsam T., Eltermann F., Hornung T., Siefer G., Steiner M., and Gombert A., 2015. CPV module with Fresnel lens primary optics and homogenizing secondary optics. AIP Conference Proceedings 1679(1): 10000.

Peharz G., Jaus J., Nitz P., Schmidt T., Schult T., and Bett A.W., 2008. Development of refractive secondary optics for FLATCON modules. In 23rd European Photovoltaic Solar Energy Conference, 3.

Estrada C.A., Jaramillo O.A., Acosta R., and Arancibia-Bulnes C.A., 2007. Heat transfer analysis in a calorimeter for concentrated solar radiation measurements. Solar Energy 81(10): 1306-1313.

Pérez-Rábago C.A., Marcos M.J., Romero M., and Estrada C.A., 2006. Heat transfer in a conical cavity calorimeter for measuring thermal power of a point focus concentrator. Solar Energy 80(11): 1434-1442.

Mittiga A., 2005. Misura della distribuzione del flusso della radiazione solare concentrata mediante collare fotovoltaico: limiti, prototipi e prime misure. Enea.

Verlinden P.J., Lewandowski A., Bingham C., Kinsey G.S., Sherif R.A., and Lasich J.B., 2006. Performance and reliability of multijunction III-V modules for concentrator dish and central receiver applications. In IEEE 4th World Conference, May 2006.

Sabatelli V., Copeta C., Bruno A., and Marano D., 2015. Sviluppo e sperimentazione di un prototipo di radiometro per la caratterizzazione del flusso solare in ricevitori a geometria cilindrica. ENEA, September 2015.

Renno C. and F. Petito. 2018. Triple-junction cell temperature evaluation in a CPV system by means of a Random-Forest model. Energy Conversion and Management 169: 124-136.

Maka A.O. and J.M. Alabid. 2022. Solar energy technology and its role in sustainable development. Clean Energy 6(3): 476-483.

Martínez J.F., Steiner M., Wiesenfarth M., Helmers H., Siefer G., Glunz S.W., and Dimroth F., 2022. Global energy harvesting potential of CPV/PV hybrid technology. arXiv preprint, 2205.12858.

Iqbal W., Ullah I., and Shin S., 2023. Optical developments in concentrating photovoltaic systems: a review. Sustainability 15(13): 10554.




DOI: https://doi.org/10.64289/iej.25.0412.7343842