Hydrogen and Methane Production from Food Waste in a Two-stage Mesophilic Anaerobic Digestion System Supplemented by Peanut Shell Biochar

Subash Dhakal, Aayush Ojha, Anish Ghimire, Bikash Adhikari, Bhola Thapa

Abstract


This paper investigated the effect of supplementing different concentrations of peanut shell biochar (PSBC) on hydrogen (H2) and methane (CH4) yield carried out on two-stage mesophilic anaerobic digestion system from food waste (FW). A working volume of 300 mL was incubated at 35℃ for hydrogen production, while a working volume of 400 mL, supplemented with 100 mL of additional inoculum, was incubated at the same temperature for methane production. The Gompertz model was employed to analyze the changes in H2 and CH4 potential, production rate, and their lag time before and after supplementing peanut shell biochar (PSBC). The results showed that the reactor with biochar supplements increased the yields of H2 by 40.99% and CH4 by 41.36%, compared to those without biochar. Additionally, different PSBC concentrations of peanut shell biochar (3 g/L, 6 g/L and 9 g/L) were supplemented to identify optimal biochar concentration. The reactor supplemented with 3 g/L of PSBC exhibited a maximum hydrogen production rate of 27.07 mL/g VS per day and a maximum methane production rate of 40.51 mL g VS per day. Similarly, for same reactors, the average cumulative H2 and CH4 yield was 37.84 mL/g VS and 452.79 mL/g VS, respectively.

Keywords


Anaerobic digestion; Biochar; Food waste; Hydrogen; Methane

Full Text:

PDF

References


Pilarska A., Kulupa T., Kubiak A., Wolna-Maruwka A., Pilarski K., and Niewiadomska A., 2023. Anaerobic Digestion of Food Waste—A Short Review. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/en16155742.

Siddiqui Z., Horan N.J., and Salter M., 2011. Energy optimisation from co-digested waste using a two-phase process to generate hydrogen and methane. Int J Hydrogen Energy 36(8): 4792–4799. doi: 10.1016/J.IJHYDENE.2010.12.118.

Quax W.J., 2014. “Bacterial enzymes,” in The Prokaryotes: Applied Bacteriology and Biotechnology, Springer-Verlag Berlin Heidelberg, 2014, pp. 193–211. doi: 10.1007/978-3-642-31331-8_26.

Wang H., Li Z., Zhou X., Wang X., and Zuo S., 2020. Anaerobic co-digestion of kitchen waste and blackwater for different practical application scenarios in decentralized scale: From wastes to energy recovery. Water (Switzerland) 12(9): Sep. 2020, doi: 10.3390/w12092556.

Pilarska A., Kulupa T., Kubiak A., Wolna-Maruwka A., Pilarski K., and Niewiadomska A., 2023. Anaerobic Digestion of Food Waste—A Short Review. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/en16155742.

Ghimire A., Frunzo L., Pirozzi F., Trably E., Escudie R., Lens P.N.L., and Esposito G., 2015. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy 144: 73-95. doi: 10.1016/j.apenergy.2015.01.045.

Ding L., Cheng J., Xia A., Jacob A., Voelklein M., and Murphy J.D., 2016. Co-generation of biohydrogen and biomethane through two-stage batch co-fermentation of macro- and micro-algal biomass. Bioresource Technology 218: 224–231. doi: 10.1016/j.biortech.2016.06.092.

Wang Y., Yin R., and Liu R., 2014. Characterization of biochar from fast pyrolysis and its effect on chemical properties of the tea garden soil. J Anal Appl Pyrolysis, vol. 110, no. 1, pp. 375–381. doi: 10.1016/j.jaap.2014.10.006.

Ma Z., Zhang Y., Shen Y., Wang J., Yang Y., Zhang W., and Wang S., 2019. Oxygen migration characteristics during bamboo torrefaction process based on the properties of torrefied solid, gaseous, and liquid products. Biomass Bioenergy 128. doi: 10.1016/j.biombioe.2019.105300.

Fang S., Yu Z., Lin Y., Hu S., Liao Y., and Ma X., 2015. Thermogravimetric analysis of the co-pyrolysis of paper sludge and municipal solid waste. Energy Convers Manag 101: 626–631. doi: 10.1016/j.enconman.2015.06.026.

Gunasee S.D., Carrier M., Gorgens J.F., and Mohee R., 2016. Pyrolysis and combustion of municipal solid wastes: Evaluation of synergistic effects using TGA-MS. J Anal Appl Pyrolysis 121: 50–61. doi: 10.1016/j.jaap.2016.07.001.

Peng N., Liu Z., Liu T., and Gai C., 2016. Emissions of polycyclic aromatic hydrocarbons (PAHs) during hydrothermally treated municipal solid waste combustion for energy generation. Appl Energy 184: 396–403. doi: 10.1016/j.apenergy.2016.10.028.

Ding K., Zhong Z., Wang J., Zhang B., Fan L., Liu S., Wang Y., Liu Y., Zhong D., Chen P., and Ruan R., 2018. Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5. Bioresource Technology 261: 86–92. doi: 10.1016/j.biortech.2018.03.138.

Fan Y., Cai Y., Li X., Jiao L., Xia J., and Deng X., 2017. Effects of the cellulose, xylan and lignin constituents on biomass pyrolysis characteristics and bio-oil composition using the Simplex Lattice Mixture Design method. Energy Conversion and Management 138: 106–118. doi: 10.1016/j.enconman.2017.01.075.

Bagherian M.A., Mehranzamir K., Rezania S., Abdul-Malek Z., Pour A.B., and Alizadeh S.M., 2021. Analyzing utilization of biomass in combined heat and power and combined cooling, heating, and power systems. MDPI AG. doi: 10.3390/pr9061002.

Jeníček L., Tunklova B., Malaťák J., Velebil J., Malaťáková J., Neškudla M., and Hnilička F., 2023. The impact of nutshell biochar on the environment as an alternative fuel or as a soil amendment. Materials 16(5): 2074. doi: 10.3390/ma16052074.

Yu K.L., Show P.L., Ong H.C., Ling T.C., Lan J.C.-W., Chen W.-H., and Chang J.-S., 2017. Microalgae from wastewater treatment to biochar – Feedstock preparation and conversion technologies. Energy Conversion and Management 150: 1–13. doi: 10.1016/J.ENCONMAN.2017.07.060.

Sang F., Yin Z., Wang W., Almatrafi E., Wang Y., Zhao B., Gong J., Zhou C., Zhang C., Zeng G., and Song B., 2022. Degradation of ciprofloxacin using heterogeneous Fenton catalysts derived from natural pyrite and rice straw biochar. Journal of Cleaner Production 378: 134459. doi: 10.1016/J.JCLEPRO.2022.134459.

Wang W., Niu Q., Zeng G., Zhang C., Huang D., Shao B., Zhou C., Yang Y., Liu Y., Guo H., Xiong W., Lei L., Liu S., Yi H., Chen S., and Tang X., 2020. 1D porous tubular g-C3N4 capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction. Appl Catal B 273:119051. doi: 10.1016/J.APCATB.2020.119051.

Wang Z., Xie L., Liu K., Wang J., Zhu H., Song Q., and Shu X., 2019. Co-pyrolysis of sewage sludge and cotton stalks. Waste Management 89: 430–438. doi: 10.1016/J.WASMAN.2019.04.033.

Tao M.L., Guan H.Y., Wang X.H., Liu Y.C., and Louh R.F., 2015. Fabrication of sulfonated carbon catalyst from biomass waste and its use for glycerol esterification. Fuel Processing Technology, vol. 138, pp. 355–360. doi: 10.1016/J.FUPROC.2015.06.021.

Perea-Moreno M.A., Manzano-Agugliaro F., Hernandez-Escobedo Q., and Perea-Moreno A.J., 2018. Peanut shell for energy: Properties and its potential to respect the environment. Sustainability (Switzerland), vol. 10, no. 9. doi: 10.3390/su10093254.

Nazir A., Um-E-laila, Firdaus-E-bareen, Hameed E., and Shafiq M., 2021. Sustainable management of peanut shell through biochar and its application as soil ameliorant. Sustainability (Switzerland), vol. 13, no. 24. doi: 10.3390/su132413796.

Lu S. and Y. Zong. 2018. Pore structure and environmental serves of biochars derived from different feedstocks and pyrolysis conditions. Environmental Science and Pollution Research, vol. 25, no. 30, pp. 30401–30409. doi: 10.1007/s11356-018-3018-7.

Qiu B., Shao Q., Shi J., Yang C., and Chu H., 2022. Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Sep Purif Technol, vol. 300, p. 121925. doi: 10.1016/J.SEPPUR.2022.121925.

Arwenyo B., Varco J.J., Dygert A., Brown S., Pittman C.U., and Mlsna T., 2023. Contribution of modified P-enriched biochar on pH buffering capacity of acidic soil. J Environ Manage, vol. 339, p. 117863. doi: 10.1016/J.JENVMAN.2023.117863.

Walker M., Zhang Y., Heaven S., and Banks C., 2009. Potential errors in the quantitative evaluation of biogas production in anaerobic digestion processes. Bioresour Technol, vol. 100, no. 24, pp. 6339–6346. doi: 10.1016/j.biortech.2009.07.018.

Nath K. and D. Das. 2011. Modeling and optimization of fermentative hydrogen production. Bioresour Technol, vol. 102, no. 18, pp. 8569–8581. doi: 10.1016/j.biortech.2011.03.108.

Swinnen I.A.M., Bernaerts K., Dens E.J.J., Geeraerd A.H., and Van Impe J.F., 2004. Predictive modelling of the microbial lag phase: A review. Int J Food Microbiol, vol. 94, no. 2, pp. 137–159. doi: 10.1016/j.ijfoodmicro.2004.01.006.

Masebinu S.O., Akinlabi E.T., Muzenda E., and Aboyade A.O., 2019. A review of biochar properties and their roles in mitigating challenges with anaerobic digestion. Renewable and Sustainable Energy Reviews 103. doi: 10.1016/j.rser.2018.12.048.

Kundu R., Kunnoth B., Pilli S., Polisetty V.R., and Tyagi R.D., 2023. Biochar symbiosis in anaerobic digestion to enhance biogas production: A comprehensive review. Journal of Environmental Management 344: 118743. doi: 10.1016/j.jenvman.2023.118743.

Wang G., Li Q., Gao X., and Wang X.C., 2018. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: Performance and associated mechanisms. Bioresource Technology vol. 250, pp. 812–820. doi: 10.1016/j.biortech.2017.12.004.

Tang S., Wang Z., Liu Z., Zhang Y., and Si B., 2020. The role of biochar to enhance anaerobic digestion: A review. Tech Science Press. doi: 10.32604/jrm.2020.011887.

Ning X., Deng C., Hickey D.T., Hackula A., O’Shea R., Wall D.M., Lin R., and Murphy J.D., 2023. Improving biomethane production from biochar-supplemented two-stage anaerobic digestion of on-farm feedstocks. J Clean Prod, vol. 423. doi: 10.1016/j.jclepro.2023.138723.

Pan J., Ma J., Zhai L., Luo T., Mei Z., and Liu H., 2019. Achievements of biochar application for enhanced anaerobic digestion: A review. Bioresource Technology 292: 122058. doi: 10.1016/j.biortech.2019.122058.

Ning X., Deng C., Hickey D.T., Hackula A., O’Shea R., Wall D.M., Lin R., and Murphy J.D., 2023. Improving biomethane production from biochar-supplemented two-stage anaerobic digestion of on-farm feedstocks. J Clean Prod, vol. 423. doi: 10.1016/j.jclepro.2023.138723.

Sunyoto N.M.S., Zhu M., Zhang Z., and Zhang D., 2016. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste. Bioresource Technology 219: 29–36 doi: 10.1016/j.biortech.2016.07.089.

François M., Lin K.-S., Rachmadona N., and Khoo K.S., 2023. Advancement of nanotechnologies in biogas production and contaminant removal: A review. Fuel, vol. 340, p. 127470, 2023, doi: https://doi.org/10.1016/j.fuel.2023.127470.

Lü F., Luo C., Shao L., and He P., 2016. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina. Water Res, vol. 90, pp. 34–43. doi: 10.1016/j.watres.2015.12.029.

Deng C., Lin R., Kang X., Wu B., Wall D.M., and Murphy J.D., 2021. What physicochemical properties of biochar facilitate interspecies electron transfer in anaerobic digestion: A case study of digestion of whiskey by-products. Fuel, vol. 306, Dec. 2021, doi: 10.1016/j.fuel.2021.121736.

Lavagnolo M.C., Girotto F., Rafieenia R., Danieli L., and Alibardi L., 2018. Two-stage anaerobic digestion of the organic fraction of municipal solid waste – Effects of process conditions during batch tests. Renewable Energy, vol. 126, pp. 14–20. doi: 10.1016/j.renene.2018.03.039.

D. Meyer-Kohlstock, T. Haupt, E. Heldt, N. Heldt, and E. Kraft, “Biochar as additive in biogas-production from bio-waste,” Energies (Basel), vol. 9, no. 4. doi: 10.3390/en9040247.

Cai J., He P., Wang Y., Shao L., and Lü F., 2016. Effects and optimization of the use of biochar in anaerobic digestion of food wastes. Waste Management and Research, vol. 34, no. 5, pp. 409–416. doi: 10.1177/0734242X16634196.

Ghimire A., Luongo V., Frunzo L., Lens P.N.L., Pirozzi F., and Esposito G., 2022. Biohythane production from food waste in a two-stage process: assessing the energy recovery potential. Environmental Technology (United Kingdom), vol. 43, no. 14, pp. 2190–2196. doi: 10.1080/09593330.2020.1869319.

Paudel S., Kang Y., Yoo Y.S., and Seo G.T., 2017. Effect of volumetric organic loading rate (OLR) on H2 and CH4 production by two-stage anaerobic co-digestion of food waste and brown water. Waste Management, vol. 61, pp. 484–493. doi: 10.1016/j.wasman.2016.12.013.

Algapani D.E., Qiao W., Ricci M., Bianchi D., Wandera S.M., Adani F., and Dong R., 2019. Bio-hydrogen and bio-methane production from food waste in a two-stage anaerobic digestion process with digestate recirculation. Renewable Energy, vol. 130, pp. 1108–1115. doi: 10.1016/j.renene.2018.08.079.

Liu X., Li R., Ji M., Wu N., and Yang F., 2021. Effects of Initial pH on Two-Stage Biogas Production and Hydrolysis in a Co-Digestion Process of Food Waste and Waste Activated Sludge. Environ Eng Sci, vol. 38, no. 4, pp. 266–276. doi: 10.1089/ees.2020.0221.

Luo L., Kaur G., Zhao J., Zhou J., Xu S., Varjani S., and Wong J.W.C., 2021. Optimization of water replacement during leachate recirculation for two-phase food waste anaerobic digestion system with off-gas diversion. Bioresource Technology 335: 125234. doi: 10.1016/J.BIORTECH.2021.125234.

Wang X. and Y. Cai Zhao, 2009. A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process. Int J Hydrogen Energy 34(1): 245–254. doi: 10.1016/j.ijhydene.2008.09.100.

Cheong D.Y. and C.L. Hansen. 2006. Acidogenesis characteristics of natural, mixed anaerobes converting carbohydrate-rich synthetic wastewater to hydrogen. Process Biochemistry 41(8): 1736–1745. doi: 10.1016/j.procbio.2006.03.014.

Wang G., Li Q., Dzakpasu M., Gao X., Yuwen C., and Wang X.C., 2018. Impacts of different biochar types on hydrogen production promotion during fermentative co-digestion of food wastes and dewatered sewage sludge. Waste Management 80: 73–80. doi: 10.1016/j.wasman.2018.08.042.

Shen R., Jing Y., Feng J., Luo J., Yu J., and Zhao L., 2020. Performance of enhanced anaerobic digestion with different pyrolysis biochars and microbial communities. Bioresource Technology 296. doi: 10.1016/j.biortech.2019.122354.

Nazir A., Um-E-laila, Firdaus-E-bareen, Hameed E., and Shafiq M., 2021. Sustainable management of peanut shell through biochar and its application as soil ameliorant. Sustainability (Switzerland), vol. 13, no. 24. doi: 10.3390/su132413796.

Xu Q., Liao Y., Cho E., and Ko J.H., 2020. Effects of biochar addition on the anaerobic digestion of carbohydrate-rich, protein-rich, and lipid-rich substrates. J Air Waste Manage Assoc 70(4): 455–467. doi: 10.1080/10962247.2020.1733133.

Cabeza I., Waterhouse T., Sohi S., and Rooke J.A., 2018. Effect of biochar produced from different biomass sources and at different process temperatures on methane production and ammonia concentrations in vitro. Anim Feed Sci Technol, 237: 1–7. doi: 10.1016/j.anifeedsci.2018.01.003.

Wan Z., Sun Y., Tang D.C.W., Hou D., Cao X., Zhang S., Gao B., and Ok Y.S., 2020. Sustainable remediation with an electroactive biochar system: mechanisms and perspectives. Green Chemistry 22(9): 2688–2711. doi: 10.1039/D0GC00717J.

Inyang M. and E. Dickenson. 2015. The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere 134: 232-240. doi: 10.1016/j.chemosphere.2015.03.072.

Tan X., Liu Y., Zeng G., Wang X., Hu X., Gu Y., and Yang Z., 2015. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125: 70-85. doi: 10.1016/j.chemosphere.2014.12.058.

Markphan W., Mamimin C., Suksong W., Prasertsan P., and O-Thong S., 2020. Comparative assessment of single-stage and two-stage anaerobic digestion for biogas production from high moisture municipal solid waste. Peer J, vol. 8. doi: 10.7717/peerj.9693.




DOI: https://doi.org/10.64289/iej.25.0309.9952413